Free Access
Issue
ESAIM: M2AN
Volume 47, Number 6, November-December 2013
Page(s) 1657 - 1689
DOI https://doi.org/10.1051/m2an/2013083
Published online 30 August 2013
  1. M. Adams, A. Lashgari, B. Li, M. McKerns, J.M. Mihaly, M. Ortiz, H. Owhadi, A.J. Rosakis, M. Stalzer T.J. Sullivan, Rigorous model-based uncertainty quantification with application to terminal ballistics. Part II: Systems with uncontrollable inputs and large scatter. J. Mech. Phys. Solids 60 (2011) 1002–1019. [CrossRef] [Google Scholar]
  2. J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA (2009), Reprint of the 1990 edition [MR1048347]. [Google Scholar]
  3. I. Babuška, F. Nobile and R. Tempone, Reliability of computational science. Numer. Methods Partial Differ. Eq. 23 (2007) 753–784. [CrossRef] [Google Scholar]
  4. R. E. Barlow and F. Proschan, Mathematical Theory of Reliability, in vol. 17 of Classics in Applied Mathematics. Society Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1996). With contributions by L. C. Hunter, Reprint of the 1965 original [MR 0195566]. [Google Scholar]
  5. D. Bertsimas and I. Popescu, Optimal inequalities in probability theory: a convex optimization approach. SIAM J. Optim. 15 (2005) 780–804. [CrossRef] [MathSciNet] [Google Scholar]
  6. P. Billingsley, Convergence of Probability Measures, 2nd edn., Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley and Sons Inc., New York (1999). http://dx.doi.org/10.1002/9780470316962. MR 1700749 (2000e:60008) [Google Scholar]
  7. S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, Cambridge (2004). [Google Scholar]
  8. H. Federer, Geometric Measure Theory, Die Grundlehren der Mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York (1969). [Google Scholar]
  9. W. Hoeffding, The role of assumptions in statistical decisions. Proc. of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. I, 1954–1955 (Berkeley and Los Angeles). University of California Press (1956) 105–114. [Google Scholar]
  10. A. Holder, Mathematical Programming Glossary, INFORMS Computing Society, http://glossary.computing.society.informs.org (2006). Originally authored by H. J. Greenberg, 1999–2006. [Google Scholar]
  11. J.R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964), 65–76. [CrossRef] [MathSciNet] [Google Scholar]
  12. D.R. Jones, C.D. Perttunen and B.E. Stuckman, Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79 (1993) 157–181. [CrossRef] [Google Scholar]
  13. A.A. Kidane, A. Lashgari, B. Li, M. McKerns, M. Ortiz, H. Owhadi, G. Ravichandran, M. Stalzer and T.J. Sullivan, Rigorous model-based uncertainty quantification with application to terminal ballistics. Part I: Systems with controllable inputs and small scatter. J. Mech. Phys. Solids 60 (2011) 983–1001. [CrossRef] [Google Scholar]
  14. M.D. Kirszbraun, Über die zusammenziehende und Lipschitzsche Transformationen. Fund. Math. 22 (1934) 77–108. [Google Scholar]
  15. V. Klee and G.J. Minty, How good is the simplex algorithm?, Inequalities, III, in Proc. Third Sympos. (Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin). Academic Press, New York (1972) 159–175. [Google Scholar]
  16. P. Limbourg, Multi-objective optimization of problems with epistemic uncertainty, Evolutionary Multi-Criterion Optimization, in Lect. Notes Comput. Sci., of vol. 3410, edited by C.A. Coello Coello, A. Hernández Aguirre and E. Zitzler. Springer Berlin/Heidelberg (2005) 413–427. [Google Scholar]
  17. L.J. Lucas, H. Owhadi and M. Ortiz, Rigorous verification, validation, uncertainty quantification and certification through concentration-of-measure inequalities. Comput. Methods Appl. Mech. Engrg. 197 (2008) 51–52, 4591–4609. [CrossRef] [Google Scholar]
  18. C. McDiarmid, On the method of bounded differences, Surveys in combinatorics, London Math. Soc. in vol. 141 of Lecture Note Ser. Cambridge Univ. Press, Cambridge (1989) 148–188. [Google Scholar]
  19. C. McDiarmid, Centering sequences with bounded differences, Combin. Probab. Comput. 6 (1997) 79–86, [CrossRef] [MathSciNet] [Google Scholar]
  20. C. McDiarmid, Concentration, Probabilistic Methods for Algorithmic Discrete Mathematics. In vol. 16 of Algorithms Combin. Springer, Berlin (1998) 195–248. [Google Scholar]
  21. M. McKerns, P. Hung and M. Aivazis, Mystic: A simple model-independent inversion framework (2009). [Google Scholar]
  22. M. McKerns, H. Owhadi, C. Scovel, T.J. Sullivan and M. Ortiz, The optimal uncertainty algorithm in the mystic framework, Caltech CACR Technical Report, August 2010, available at http://arxiv.org/pdf/1202.1055v1. [Google Scholar]
  23. M.M. McKerns, L. Strand, T.J. Sullivan, A. Fang and M.A.G. Aivazis, Building a framework for predictive science. Proc. of the 10th Python in Science Conference (SciPy 2011), edited by S. van der Walt and J. Millman (2011) 67–78. Available at http://jarrodmillman.com/scipy2011/pdfs/mckerns.pdf. [Google Scholar]
  24. E.J. McShane, Extension of range of functions. Bull. Amer. Math. Soc. 40 (1934) 837–842. [CrossRef] [MathSciNet] [Google Scholar]
  25. R. Morrison, C. Bryant, G. Terejanu, K. Miki and S. Prudhomme, Optimal data split methodology for model validation, Proc. of World Congress on Engrg and Comput. Sci. (2011) vol. II, 1038–1043. [Google Scholar]
  26. W.L. Oberkampf, J.C. Helton, C.A. Joslyn, S.F. Wojtkiewicz and S. Ferson, Challenge problems: Uncertainty in system response given uncertain parameters. Reliab. Eng. Sys. Safety 85 (2004) 11–19. [Google Scholar]
  27. W.L. Oberkampf, T.G. Trucano and C. Hirsch, Verification, validation and predictive capability in computational engineering and physics. Appl. Mech. Rev. 57 (2004) 345–384. [CrossRef] [Google Scholar]
  28. H. Owhadi, C. Scovel, T. J. Sullivan, M. McKerns and M. Ortiz, Optimal Uncertainty Quantification. SIAM Rev. To appear. [Google Scholar]
  29. K.V. Price, R.M. Storn and J.A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Natural Comput. Ser. Springer-Verlag, Berlin (2005). [Google Scholar]
  30. C.J. Roy and W.L. Oberkampf, A complete framework for verification, validation and uncertainty quantification in scientific computing, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2010). [Google Scholar]
  31. L. Schwartz, Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London (1973). Tata Institute of Fundamental Research Studies in Mathematics, No. 6. [Google Scholar]
  32. A.V. Skorohod, Limit theorems for stochastic processes, Teor. Veroyatnost. i Primenen. (Theor. Probab. Appl.) 1 (1956), 289–319. [Google Scholar]
  33. L.A. Steen and J.A. Seebach, Jr., Counterexamples in Topology, 2nd edn. Springer-Verlag, New York (1978). [Google Scholar]
  34. R. Storn and K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11 (1997) 341–359. [Google Scholar]
  35. A.M. Stuart, Inverse problems: a Bayesian perspective. Acta Numer. 19 (2010) 451–559. [CrossRef] [MathSciNet] [Google Scholar]
  36. T. J. Sullivan, U. Topcu, M. McKerns and H. Owhadi, Uncertainty quantification via codimension-one partitioning. Int. J. Numer. Meth. Engng. 85 (2011) 1499–1521. [CrossRef] [Google Scholar]
  37. M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math. (1995) 73–205. [Google Scholar]
  38. U. Topcu, L. J. Lucas, H. Owhadi and M. Ortiz, Rigorous uncertainty quantification without integral testing. Reliab. Eng. Sys. Safety 96 (2011) 1085–1091. [CrossRef] [Google Scholar]
  39. F.A. Valentine, A Lipschitz condition preserving extension for a vector function. Amer. J. Math. 67 (1945) 83–93. [CrossRef] [MathSciNet] [Google Scholar]
  40. V.H. Vu, Concentration of non-Lipschitz functions and applications, Random Structures Algorithms 20 (2002) 262–316. [CrossRef] [MathSciNet] [Google Scholar]
  41. M.L. Wage, The product of Radon spaces, Uspekhi Mat. Nauk 35 (1980) 151–153, International Topology Conference (Moscow State Univ., Moscow, 1979), Translated from the English by A.V. Arhangel′skiĭ. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you