Issue |
ESAIM: M2AN
Volume 48, Number 2, March-April 2014
Multiscale problems and techniques
|
|
---|---|---|
Page(s) | 411 - 431 | |
DOI | https://doi.org/10.1051/m2an/2013113 | |
Published online | 20 February 2014 |
Asymptotics of a Time-Splitting Scheme for the Random Schrödinger Equation with Long-Range Correlations
1 Laboratoire d’Analyse, Topologie, Probabilités, UMR 7353,
Aix-Marseille Université, Marseille, France.
christophe.gomez@latp.univ-mrs.fr
2 Department of Mathematics, Colorado State University, Fort Collins, CO, USA.
pinaud@math.colostate.edu
Received:
3
September
2013
This work is concerned with the asymptotic analysis of a time-splitting scheme for the Schrödinger equation with a random potential having weak amplitude, fast oscillations in time and space, and long-range correlations. Such a problem arises for instance in the simulation of waves propagating in random media in the paraxial approximation. The high-frequency limit of the Schrödinger equation leads to different regimes depending on the distance of propagation, the oscillation pattern of the initial condition, and the statistical properties of the random medium. We show that the splitting scheme captures these regimes in a statistical sense for a time stepsize independent of the frequency.
Résumé
Nous nous intéressons au comportement asymptotique d’un schéma de time-splitting pour l’équation de Schrödinger avec potential aléatoire de faible amplitude, oscillant rapidement en temps et en espace, et présentant des corrélations longue portée. Cette équation décrit par exemple la propagation d’une onde dans un milieu aléatoire dans le cadre de l’approximation paraxiale. La limite haute-fréquence de l’équation de Schrödinger mène à différents régimes selon la distance de propagation, la fréquence d’oscillation de la condition initiale, et la statistique du milieu aléatoire. Nous montrons que le schéma de splitting capture statistiquement ces régimes asymptotiques pour un pas de discrétisation en temps indépendant de la fréquence d’oscillation.
Mathematics Subject Classification: 65M12 / 65M70 / 65C30 / 60H15
Key words: Random Schrödinger equation / long-range correlations / high frequency asymptotics / splitting scheme
© EDP Sciences, SMAI, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.