Free Access
Issue |
ESAIM: M2AN
Volume 48, Number 2, March-April 2014
Multiscale problems and techniques
|
|
---|---|---|
Page(s) | 411 - 431 | |
DOI | https://doi.org/10.1051/m2an/2013113 | |
Published online | 20 February 2014 |
- G. Bal, T. Komorowski and L. Ryzhik, Kinetic limits for waves in a random medium. Kinet. Relat. Models 3 (2010) 529–644. [CrossRef] [MathSciNet] [Google Scholar]
- G. Bal, T. Komorowski and L. Ryzhik, Asymptotics of the phase of the solutions of the random schrödinger equation. ARMA (2011) 13–64. [Google Scholar]
- G. Bal and L. Ryzhik, Time splitting for wave equations in random media. ESAIM: M2AN 38 (2004) 961–988. [CrossRef] [EDP Sciences] [Google Scholar]
- W. Bao, S. Jin and P.A. Markowich, On Time-Splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175 (2002) 487–524. [CrossRef] [MathSciNet] [Google Scholar]
- P. Billingsley, Convergence of Probability Measures. John Wiley and Sons, New York (1999). [Google Scholar]
- S. Dolan, C. Bean and B. Riollet, The broad-band fractal nature of heterogeneity in the upper crust from petrophysical logs. Geophys. J. Int. 132 (1998) 489–507. [CrossRef] [Google Scholar]
- J.-P. Fouque, J. Garnier, G. Papanicolaou and K. Sølna, Wave propagation and time reversal in randomly layered media, in vol. 56 of Stoch. Model. Appl. Probab. Springer, New York (2007). [Google Scholar]
- C. Gomez, Radiative transport limit for the random Schrödinger equation with long-range correlations. J. Math. Pures. Appl. 98 (2012) 295–327. [CrossRef] [Google Scholar]
- C. Gomez, Wave decoherence for the random Schrödinger equation with long-range correlations. To appear in CMP (2012). [Google Scholar]
- A.A. Gonoskov and I.A. Gonoskov, Suppression of reflection from the grid boundary in solving the time-dependent Schroedinger equation by split-step technique with fast Fourier transform, ArXiv Physics e-prints (2006). [Google Scholar]
- S. Jin, P. Markowich and C. Sparber, Mathematical and computational methods for semiclassical Schrödinger equations. Acta Numer. 20 (2011) 121–209. [CrossRef] [MathSciNet] [Google Scholar]
- P.-L. Lions and T. Paul, Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9 (1993) 553–618. [CrossRef] [MathSciNet] [Google Scholar]
- P.A. Markowich, P. Pietra and C. Pohl, Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit. Numer. Math. 81 (1999) 595–630. [CrossRef] [MathSciNet] [Google Scholar]
- J.M. Martin and M. Flatté, Intensity images and statistics from numerical simulation of the wave propagation in 3-d random media. Appl. Optim. 247 (1988) 2111–2126. [Google Scholar]
- R.I. McLachlan and G.R.W. Quispel, Splitting methods. Acta Numer. 11 (2002) 341–434. [CrossRef] [MathSciNet] [Google Scholar]
- C. Sidi and F. Dalaudier, Turbulence in the stratified atmosphere: Recent theoretical developments and experimental results. Adv. Space Research 10 (1990) 25–36. [CrossRef] [Google Scholar]
- G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968) 506–517. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- F. Tappert, The parabolic approximation method, Wave propagation in underwater acoustics. In vol. 70 of Lect. Notes Phys. Springer (1977) 224–287. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.