Issue |
ESAIM: M2AN
Volume 48, Number 4, July-August 2014
|
|
---|---|---|
Page(s) | 1089 - 1116 | |
DOI | https://doi.org/10.1051/m2an/2013132 | |
Published online | 02 July 2014 |
A reduced model for Darcy’s problem in networks of fractures∗
1 MOX - Dipartimento di Matematica “F. Brioschi” – Politecnico
di Milano - via Bonardi 9, 20133 Milan, Italy.
luca.formaggia@polimi.it; anna.scotti@polimi.it
2 IFP Energies nouvelles – 1 and 4, avenue de Bois-Prau, 92852
Rueil-Malmaison Cedex, France.
alessio.fumagalli1984@gmail.com
3 ENI Spa – Exploration and Production Division –
5° Palazzo Uffici, Room 4046
E, GEBA Dept. - via Emilia 1, San Donato Milanese, 20097 (MI), Italy.
paolo.ruffo@eni.com
Received:
12
February
2013
Revised:
18
September
2013
Subsurface flows are influenced by the presence of faults and large fractures which act as preferential paths or barriers for the flow. In literature models were proposed to handle fractures in a porous medium as objects of codimension 1. In this work we consider the case of a network of intersecting fractures, with the aim of deriving physically consistent and effective interface conditions to impose at the intersection between fractures. This new model accounts for the angle between fractures at the intersections and allows for jumps of pressure across intersections. This fact permits to describe the flow when fractures are characterized by different properties more accurately with respect to other models that impose pressure continuity. The main mathematical properties of the model, derived in the two-dimensional setting, are analyzed. As concerns the numerical discretization we allow the grids of the fractures to be independent, thus in general non-matching at the intersection, by means of the extended finite element method (XFEM). This increases the flexibility of the method in the case of complex geometries characterized by a high number of fractures.
Mathematics Subject Classification: 65N30 / 76S05 / 86A60
Key words: Reduced models / fractured porous media / XFEM
© EDP Sciences, SMAI 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.