Free Access
Volume 48, Number 4, July-August 2014
Page(s) 1089 - 1116
Published online 02 July 2014
  1. R.T. Adams, Sobolev Spaces, vol. 65. Pure and Applied Mathematics. Academic Press (1975). [Google Scholar]
  2. P.M. Adler and J.-F. Thovert, Fractures and fracture networks. Springer (1999). [Google Scholar]
  3. P.M. Adler, J.-F. Thovert and V.V. Mourzenko, Fractured porous media. Oxford University Press (2012). [Google Scholar]
  4. C. Alboin, J. Jaffré, J.E. Roberts and C. Serres, Modeling fractures as interfaces for flow and transport in porous media, in Fluid flow and transport in porous media: mathematical and numerical treatment (South Hadley, MA, 2001), vol. 295. Contemp. Math.. Amer. Math. Soc. Providence, RI (2002) 13–24. [Google Scholar]
  5. C. Alboin, J. Jaffré, J.E. Roberts, X. Wang and C. Serres. Domain decomposition for some transmission problems in flow in porous media, vol. 552. Lect. Notes Phys. Springer, Berlin (2000) 22–34. [Google Scholar]
  6. L. Amir, M. Kern, V. Martin and J.E. Roberts, Décomposition de domaine et préconditionnement pour un modèle 3D en milieu poreux fracturé, in Proc. of JANO 8, 8th Conf. Numer. Anal. Optim. (2005). [Google Scholar]
  7. P. Angot, F. Boyer and F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: M2AN 43 (2009) 239–275. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  8. J. Bear, C.-F. Tsang and G. de Marsily, Flow and contaminant transport in fractured rock. Academic Press, San Diego (1993). [Google Scholar]
  9. R. Becker, E. Burman and P. Hansbo, A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. Comput. Methods Appl. Mech. Engrg. 198 (2009) 3352–3360. [CrossRef] [MathSciNet] [Google Scholar]
  10. B. Berkowitz, Characterizing flow and transport in fractured geological media: A review. Adv. Water Resources 25 (2002) 861–884. [Google Scholar]
  11. S. Berrone, S. Pieraccini and S. Scialò, On simulations of discrete fracture network flows with an optimization-based extended finite element method. SIAM J. Sci. Comput. 35 (2013) 908–935. [Google Scholar]
  12. S. Berrone, S. Pieraccini and S. Scialò, A PDE-constrained optimization formulation for discrete fracture network flows. SIAM J. Sci. Comput. 35 (2013). [Google Scholar]
  13. H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Springer (2010). [Google Scholar]
  14. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15. Comput. Math. Springer Verlag, Berlin (1991). [Google Scholar]
  15. C. D’Angelo and A. Scotti, A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM: M2AN 46 (2012) 465–489. [CrossRef] [EDP Sciences] [Google Scholar]
  16. A. Ern and J.L. Guermond, Theory and practice of finite elements. Appl. Math. Sci. Springer (2004). [Google Scholar]
  17. B. Faybishenko, P.A. Witherspoon and S.M. Benson, Dynamics of fluids in fractured rock, vol. 122. Geophysical monographs. American geophysical union (2000). [Google Scholar]
  18. A. Fumagalli, Numerical Modelling of Flows in Fractured Porous Media by the XFEM Method. Ph.D. thesis, Politecnico di Milano (2012). [Google Scholar]
  19. A. Fumagalli and A. Scotti, A numerical method for two-phase ow in fractured porous media with non-matching grids, in vol. 62 of Adv. Water Resources (2013) 454–464. [Google Scholar]
  20. A. Fumagalli and A. Scotti, A reduced model for flow and transport in fractured porous media with non-matching grids, Numer. Math. Advanced Applications 2011. Edited by A. Cangiani, R.L. Davidchack, E. Georgoulis, A.N. Gorban, J. Levesley and M.V. Tretyakov. Springer Berlin, Heidelberg (2013) 499–507. [Google Scholar]
  21. B. Gong, G. Qin, C. Douglas and S. Yuan, Detailed modeling of the complex fracture network of shale gas reservoirs. SPE Reservoir Evaluation and Engrg. (2011). [Google Scholar]
  22. A. Hansbo and P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Engrg. 193 (2004) 3523–3540. [CrossRef] [MathSciNet] [Google Scholar]
  23. M. Hussein and D. Roussos, Discretizing two-dimensional complex fractured fields for incompressible two-phase flow. Int. J. Numer. Methods Fluids (2009). [Google Scholar]
  24. J. Jaffré, V. Martin and J.E. Roberts, Generalized cell-centered finite volume methods for flow in porous media with faults, in Finite volumes for complex applications III (Porquerolles, 2002). Hermes Sci. Publ., Paris (2002) 343–350. [Google Scholar]
  25. J. Jaffré, M. Mnejja and J.E. Roberts, A discrete fracture model for two-phase flow with matrix-fracture interaction. Procedia Comput. Sci. 4 (2011) 967–973. [Google Scholar]
  26. M. Karimi-Fard, L.J. Durlofsky and K. Aziz, An Efficient Discrete-Fracture Model Applicable for General-Purpose Reservoir Simulators. SPE J. 9 (2004) 227–236. [CrossRef] [Google Scholar]
  27. V. Martin, J. Jaffré and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26 (2005) 1667–1691. [Google Scholar]
  28. H. Mustapha, A new approach to simulating flow in discrete fracture networks with an optimized mesh. SIAM J. Sci. Comput. 29 (2007) 1439–1459. [CrossRef] [Google Scholar]
  29. A. Quarteroni and A. Valli, Numerical approximation of partial differential equations, vol. 23. Springer Ser. Comput. Math. Springer-Verlag, Berlin (1994). [Google Scholar]
  30. M. Sahimi, Flow and transport in porous media and fractured rock. Wiley-VCH, Weinheim (2011). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you