Issue |
ESAIM: M2AN
Volume 49, Number 2, March-April 2015
|
|
---|---|---|
Page(s) | 559 - 576 | |
DOI | https://doi.org/10.1051/m2an/2014045 | |
Published online | 17 March 2015 |
Supercloseness of orthogonal projections onto nearby finite element spaces
1
Computational and Mathematical Engineering, Stanford
University, Stanford,
CA,
USA
egawlik@stanford.edu
2
Mechanical Engineering, Stanford University,
Stanford, CA, USA
lewa@stanford.edu
Received:
11
March
2014
Revised:
2
July
2014
We derive upper bounds on the difference between the orthogonal projections of a smooth function u onto two finite element spaces that are nearby, in the sense that the support of every shape function belonging to one but not both of the spaces is contained in a common region whose measure tends to zero under mesh refinement. The bounds apply, in particular, to the setting in which the two finite element spaces consist of continuous functions that are elementwise polynomials over shape-regular, quasi-uniform meshes that coincide except on a region of measure O(hγ), where γ is a nonnegative scalar and h is the mesh spacing. The projector may be, for example, the orthogonal projector with respect to the L2- or H1-inner product. In these and other circumstances, the bounds are superconvergent under a few mild regularity assumptions. That is, under mesh refinement, the two projections differ in norm by an amount that decays to zero at a faster rate than the amounts by which each projection differs from u. We present numerical examples to illustrate these superconvergent estimates and verify the necessity of the regularity assumptions on u.
Mathematics Subject Classification: 65N30 / 65N15
Key words: Superconvergence / orthogonal projection / elliptic projection / L2-projection
© EDP Sciences, SMAI, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.