Free Access
Issue |
ESAIM: M2AN
Volume 49, Number 2, March-April 2015
|
|
---|---|---|
Page(s) | 559 - 576 | |
DOI | https://doi.org/10.1051/m2an/2014045 | |
Published online | 17 March 2015 |
- A.B. Andreev, Supercloseness between the elliptic projection and the approximate eigenfunction and its application to a postprocessing of finite element eigenvalue problems. In Numer. Anal. Appl. Springer (2005) 100–107. [Google Scholar]
- I. Babuška and A. Miller, The post-processing approach in the finite element method, Part 1: Calculation of displacements, stresses and other higher derivatives of the displacements. Int. J. Numer. Methods Eng. 20 (1984) 1085–1109. [CrossRef] [Google Scholar]
- I. Babuška, T. Strouboulis, C.S. Upadhyay and S.K. Gangaraj, Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace’s, Poisson’s, and the elasticity equations. Numer. Methods Partial Differ. Equ. 12 (1996) 347–392. [CrossRef] [Google Scholar]
- R.E. Bank and J. Xu, Asymptotically exact a posteriori error estimators, Part I: Grids with superconvergence. SIAM J. Numer. Anal. 41 (2003) 2294–2312. [CrossRef] [Google Scholar]
- J. Barlow, Optimal stress locations in finite element models. Int. J. Numer. Methods Eng. 10 (1976) 243–251. [CrossRef] [Google Scholar]
- J. Brandts and M. Křížek, Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23 (2003) 489–505. [CrossRef] [MathSciNet] [Google Scholar]
- B. Cockburn, M. Luskin, C.W. Shu and E. Süli, Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. Math. Comput. 72 (2003) 577–606. [CrossRef] [Google Scholar]
- M. Crouzeix and V. Thomee, Stability in Lp and W1,p of the L2-projection onto finite element function spaces. Math. Comput. 48 (1987) 531–532. [Google Scholar]
- A. Ern and J.L. Guermond, Theory and Practice of Finite Elements. Springer, New York (2004). [Google Scholar]
- E.S. Gawlik and A.J. Lew, Unified analysis of finite element methods for problems with moving boundaries (2014). [Google Scholar]
- G. Goodsell, Pointwise superconvergence of the gradient for the linear tetrahedral element. Numer. Methods Partial Differ. Equ. 10 (1994) 651–666. [CrossRef] [Google Scholar]
- G. Goodsell and J.R. Whiteman, A unified treatment of superconvergent recovered gradient functions for piecewise linear finite element approximations. Int. J. Numer. Methods Eng. 27 (1989) 469–481. [CrossRef] [Google Scholar]
- Y. Huang and J. Xu, Superconvergence of quadratic finite elements on mildly structured grids. Math. Comput. 77 (2008) 1253–1268. [CrossRef] [Google Scholar]
- M. Křížek and P. Neittaanmäki, Superconvergence phenomenon in the finite element method arising from averaging gradients. Numer. Math. 45 (1984) 105–116. [CrossRef] [MathSciNet] [Google Scholar]
- M. Křížek and P. Neittaanmäki, On superconvergence techniques. Acta Appl. Math. 9 (1987) 175–198. [CrossRef] [Google Scholar]
- B. Li, Lagrange interpolation and finite element superconvergence. Numer. Methods Partial Differ. Equ. 20 (2004) 33–59. [CrossRef] [Google Scholar]
- J. Liu, G. Hu and Q. Zhu, Superconvergence of tetrahedral quadratic finite elements for a variable coefficient elliptic equation. Numer. Methods Partial Differ. Equ. 29 (2012) 1043–1055. [CrossRef] [Google Scholar]
- L.A. Oganesyan and L.A. Rukhovets, Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary. USSR Comput. Math. Math. Phys. 9 (1969) 158–183. [CrossRef] [Google Scholar]
- A.H. Schatz, I.H. Sloan and L.B. Wahlbin, Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point. SIAM J. Numer. Anal. 33 (1996) 505–521. [CrossRef] [Google Scholar]
- L.B. Wahlbin, Superconvergence in Galerkin finite element methods. Springer, Berlin (1995). [Google Scholar]
- O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Numer. Methods Eng. 33 (1992) 1331–1364. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.