Issue |
ESAIM: M2AN
Volume 49, Number 4, July-August 2015
|
|
---|---|---|
Page(s) | 953 - 976 | |
DOI | https://doi.org/10.1051/m2an/2014059 | |
Published online | 19 June 2015 |
Convergence of a high order method in time and space for the miscible displacement equations∗,∗∗
1 Department of Computational and
Applied Mathematics, Rice University, Houston, TX
77005, USA
Jizhou.Li@rice.edu; riviere@rice.edu
2
Department of Mathematics, Carnegie Mellon
University, Pittsburgh, PA
15213,
USA
noelw@andrew.cmu.edu
Received:
31
October
2013
Revised:
30
October
2014
A numerical method is formulated and analyzed for solving the miscible displacement problem under low regularity assumptions. The scheme employs discontinuous Galerkin time stepping with mixed and interior penalty discontinuous Galerkin finite elements in space. The numerical approximations of the pressure, velocity, and concentration converge to the weak solution as the mesh size and time step tend to zero. To pass to the limit a compactness theorem is developed which generalizes the Aubin−Lions theorem to accommodate discontinuous functions both in space and in time.
Mathematics Subject Classification: 65M12 / 65M60
Key words: Generalized Aubin−Lions / discontinuous Galerkin / mixed finite element / arbitrary order / weak solution / convergence
© EDP Sciences, SMAI, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.