Free Access
Issue
ESAIM: M2AN
Volume 49, Number 4, July-August 2015
Page(s) 953 - 976
DOI https://doi.org/10.1051/m2an/2014059
Published online 19 June 2015
  1. S. Bartels, M. Jensen and R. Müller, Discontinuous Galerkin finite element convergence for incompressible miscible displacement problems of low regularity. SIAM J. Numer. Anal. 47 (2009) 3720–3743. [CrossRef] [Google Scholar]
  2. S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods. In vol. 15. Springer-Verlag (2007). [Google Scholar]
  3. F. Brezzi, J. Douglas, M. Fortin and L. Marini, Efficient rectangular mixed finite elements in two and three space variables. RAIRO Model. Math. Anal. Numer. 21 (1987) 581–604. [MathSciNet] [Google Scholar]
  4. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Number 15 in Comput. Math. Springer-Verlag (1991). [Google Scholar]
  5. A. Buffa and C. Ortner, Variational convergence of IP-DGFEM. Technical Report (2007). [Google Scholar]
  6. A. Buffa and C. Ortner, Compact embeddings of broken Sobolev spaces and applications. IMA J. Numer. Anal. 29 (2009) 827–855. [CrossRef] [MathSciNet] [Google Scholar]
  7. Z. Chen and R.E. Ewing, Mathematical analysis for reservoir models. SIAM J. Math. Anal. 30 (1999) 431–453. [CrossRef] [MathSciNet] [Google Scholar]
  8. D. Di Pietro and A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations. Math. Comput. 79 (2010) 1303–1330. [CrossRef] [MathSciNet] [Google Scholar]
  9. J. Douglas, R.E. Ewing and M.F. Wheeler, A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO. Numer. Anal. 17 (1983) 249–265. [Google Scholar]
  10. Y. Epshteyn and B.B. Rivière, Convergence of high order methods for miscible displacement. Int. J. Numer. Anal. Model. 5 (2008) 47–63. [Google Scholar]
  11. K. Eriksson, C. Johnson and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO Model. Math. Anal. Numer. 19 (1985) 611–643. [MathSciNet] [Google Scholar]
  12. R. Ewing and M.F. Wheeler, Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17 (1980) 351–365. [CrossRef] [Google Scholar]
  13. R.E. Ewing and T. Russell, Efficient time-stepping methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 19 (1982) 1–67. [CrossRef] [Google Scholar]
  14. X. Feng, On existence and uniqueness results for a coupled system modeling miscible displacement in porous media. J. Math. Anal. Appl. 194 (1995) 883–910. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Jensen and R. Müller, Stable Crank−Nicolson discretisation for incompressible miscible displacement problems of low regularity. Numer. Math. Adv. Appl. (2010) 469–477. [Google Scholar]
  16. M. Ohlberger, Convergence of a mixed finite element – finite volume method for the two phase flow in porous media. East-Weat J. Numer. Math. 5 (1997) 183–210. [Google Scholar]
  17. B. Riviere and N.J. Walkington, Convergence of a discontinuous Galerkin method for the miscible displacement under low regularity. SIAM J. Numer. Anal. 49 (2011) 1085—1110. [CrossRef] [Google Scholar]
  18. T.F. Russell, Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media. SIAM J. Numer. Anal. 22 (1985) 970–1013. [CrossRef] [Google Scholar]
  19. R.E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations. American Mathematical Society, Providence, RI (1997). Available online at http://www.ams.org/online_bks/surv49/. [Google Scholar]
  20. S. Sun, B. Riviere and M.F. Wheeler, A combined mixed finite element and discontinuous Galerkin method for miscible displacement problem in porous media. Recent Progress in Computational and Applied PDEs (2002) 323–348. [Google Scholar]
  21. N.J. Walkington, Compactness properties of the DG and CG time stepping schemes for parabolic equations. SIAM J. Numer. Anal. 47 (2010) 4680–4170. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you