Issue |
ESAIM: M2AN
Volume 50, Number 1, January-February 2016
|
|
---|---|---|
Page(s) | 43 - 75 | |
DOI | https://doi.org/10.1051/m2an/2015030 | |
Published online | 09 November 2015 |
Effective transmission conditions for thin-layer transmission problems in elastodynamics. The case of a planar layer model
1
POEMS (ENSTA ParisTech, CNRS, INRIA, Université Paris-Saclay),
Palaiseau,
France
mbonnet@ensta.fr; patrick.joly@inria.fr
2
Laboratoire de Mathématiques d’Orsay, Université Paris-Sud,
Orsay,
France
alienor.burel@gmail.com
3
MAGIQUE 3D team, INRIA Bordeaux Sud-Ouest,
Talence,
France
marc.durufle@inria.fr
Received: 27 May 2014
Revised: 10 February 2015
This article is concerned with the design, analysis, numerical approximation and implementation of effective transmission conditions (ETCs) for the propagation of elastic waves through a thin planar elastic layer with small uniform thickness η which is embedded in a reference elastic medium, under transient conditions, with both materials assumed to have isotropic properties. A family of ETCs of order k (i.e. whose approximation error is of expected order O(ηk + 1)) is formulated by deriving and exploiting a formal asymptotic expansion in powers of η of the transmission solution inside the layer. The second-order ETCs are then retained as the main focus for the remainder of the article, and given a full justification in terms of both the stability of the resulting transient elastodynamic problem and the error analysis. The latter is performed by establishing and justifying asymptotic expansions for the solutions of both the exact transmission problem and its approximation based on the second-order ETCs. As a result, the error (in energy norm) between those two solutions is shown to be, as expected, of order O(η3). Finally, the numerical approximation of the proposed second-order ETC within the framework of spectral element methods is studied, with special attention devoted to the selection of a robust time-stepping scheme that is mostly explicit (and conditionally stable). Among these, a scheme that is implicit only for the interfacial degrees of freedom, termed semi-implicit, is shown to be stable under the same stability condition as for the layer-less configuration. The main theoretical results of this work are illustrated and validated by 2D and 3D numerical experiments under transient elastodynamic conditions.
Mathematics Subject Classification: 35L05 / 35C20 / 74B05 / 65N12 / 65N30
Key words: Thin layer approximations / elastodynamics / transmission / asymptotic expansion
© EDP Sciences, SMAI, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.