Free Access
Volume 50, Number 1, January-February 2016
Page(s) 43 - 75
Published online 09 November 2015
  1. H. Ammari and C. Latiri-Grouz, Conditions aux limites approchées pour les couches minces périodiques. ESAIM: M2AN 33 (1999) 673–692. [CrossRef] [EDP Sciences] [Google Scholar]
  2. X. Antoine and H. Barucq, Approximation by generalized impedance boundary conditions of a transmission problem in acoustic scattering. ESAIM: M2AN 39 (2005) 1041–1059. [CrossRef] [EDP Sciences] [Google Scholar]
  3. A. Bendali and K. Lemrabet, The effect of a thin coating on the scattering of a time-harmonic wave for the helmholtz equation. SIAM J. Appl. Math. 56 (1996) 1664–1693. [CrossRef] [MathSciNet] [Google Scholar]
  4. I. Bihari, A generalization of a lemma of bellman and its application to uniqueness problems of differential equations. Acta Math. Hungarica 7 (1956) 81–94. [CrossRef] [Google Scholar]
  5. S. Chun, H. Haddar J.S. Hesthaven, High-order accurate thin layer approximations for time-domain electromagnetics, part ii: transmission layers. J. Comput. Appl. Math. 234 (2010) 2587–2608. [CrossRef] [MathSciNet] [Google Scholar]
  6. G Cohen, Higher-order numerical methods for transient wave equations. Springer-Verlag (2001). [Google Scholar]
  7. M. Dauge, S. Tordeux and G. Vial, Self-similar perturbation near a corner: matching versus multiscale expansions for a model problem. Around the Research of Vladimir Maz’ya II, Partial Differential Equations. Vol. 12 of International Mathematical Series. Springer (2010) 95–134. [Google Scholar]
  8. B. Delourme, H. Haddar and P. Joly, Approximate models for wave propagation across thin periodic interfaces. J. Math. pures Appl. 98 (2012) 28–71. [Google Scholar]
  9. B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31 (1977) 629–651. [Google Scholar]
  10. B. Engquist and J.-C. Nédélec, Effective boundary conditions for acoustic and electromagnetic scattering in thin layers. Technical report, Technical Report of CMAP, 278 (1993). [Google Scholar]
  11. L.C. Evans, Partial differential equations. American Mathematical Society (1998). [Google Scholar]
  12. G. Geymonat, S. Hendili, F. Krasucki and M. Vidrascu, Matched asymptotic expansion method for a homogenized interface model. 24 (2014) 573–597. [Google Scholar]
  13. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag (2001). [Google Scholar]
  14. H. Haddar and P. Joly, Stability of thin layer approximation of electromagnetic waves scattering by linear and non linear coatings. Stud. Math. Appl. 31 (2002) 415–456. [Google Scholar]
  15. H Haddar and P. Joly, Stability of thin layer approximation of electromagnetic waves scattering by linear and nonlinear coatings. J. Comput. Appl. Math. 143 (2002) 201–236. [CrossRef] [MathSciNet] [Google Scholar]
  16. H. Haddar, P. Joly and H.-M. Nguyen, Generalized impedance boundary conditions for scattering problems from strongly absorbing obstacles: the case of Maxwell’s equations. Math. Models Methods Appl. Sci. 18 (2008) 1787–1827. [CrossRef] [MathSciNet] [Google Scholar]
  17. P. Joly, Analyse et approximation de modèles de propagation d’ondes. analyse mathématique. Lecture notes, Ecole polytechnique, Palaiseau, France (2002). [Google Scholar]
  18. V. Maz’ya, S.A. Nazarov and B.A. Plamenevskii, Asymptotic theory of elliptic boundary value problems under a singular perturbation of the domains, vols. 1 and 2. Birkhaüser (2000). [Google Scholar]
  19. W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge (2000). [Google Scholar]
  20. V. Péron, Equivalent boundary conditions for an elasto-acoustic problem set in a domain with a thin layer. ESAIM: M2AN 48 (2014) 1431–1449. [CrossRef] [EDP Sciences] [Google Scholar]
  21. K. Schmidt and A. Chernov, A unified analysis of transmission conditions for thin conducting sheets in the time-harmonic eddy current model. SIAM J. Appl. Math. 73 (2013) 1980–2003. [CrossRef] [MathSciNet] [Google Scholar]
  22. T.B.A. Senior and J.L. Volakis, Generalized impedance boundary conditions in scattering. Proc. IEEE 79 (1991) 1413–1420. [CrossRef] [Google Scholar]
  23. T.B.A Senior and J.L. Volakis, Approximate boundary conditions in electromagnetics. Institution of Electrical Engineers, London, UK (1995). [Google Scholar]
  24. L.N. Trefethen and L. Halpern, Well-posedness of one-way wave equations and absorbing boundary conditions. Math. Comput. 47 (1986) 421–435. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you