Issue |
ESAIM: M2AN
Volume 50, Number 2, March-April 2016
|
|
---|---|---|
Page(s) | 337 - 360 | |
DOI | https://doi.org/10.1051/m2an/2015045 | |
Published online | 16 February 2016 |
A discontinuous Galerkin reduced basis element method for elliptic problems
1 MOX–Modeling and Scientific
Computing, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo
da Vinci 32, 20133 Milano, Italy.
paola.antonietti@polimi.it paolo.pacciarini@polimi.it
alfio.quarteroni@polimi.it
2 CMCS, École Polytechnique Fédérale de Lausanne (EPFL),
Station 8, 1015 Lausanne, Switzerland.
alfio.quarteroni@epfl.ch
Received:
30
August
2014
Revised:
17
June
2015
We propose and analyse a new discontinuous reduced basis element method for the approximation of parametrized elliptic PDEs in partitioned domains. The method is built upon an offline stage (parameter independent) and an online (parameter dependent) one. In the offline stage we build a non-conforming (discontinuous) global reduced space as a direct sum of local basis functions generated independently on each subdomain. In the online stage, for any given value of the parameter, the approximate solution is obtained by ensuring the weak continuity of the fluxes and of the solution itself thanks to a discontinuous Galerkin approach. The new method extends and generalizes the methods introduced in [L. Iapichino, Ph.D. thesis, EPF Lausanne (2012); L. Iapichino, A. Quarteroni and G. Rozza, Comput. Methods Appl. Mech. Eng. 221–222 (2012) 63–82]. We prove its stability and convergence properties, as well as the spectral properties of the associated online algebraic system. We also propose a two-level preconditioner for the online problem which exploits the pre-existing decomposition of the domain and is based upon the introduction of a global coarse finite element space. Numerical tests are performed to verify our theoretical results.
Mathematics Subject Classification: 65N12 / 65N30
Key words: Reduced basis element method / discontinuous Galerkin / domain decomposition
© EDP Sciences, SMAI 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.