Free Access
Issue
ESAIM: M2AN
Volume 50, Number 2, March-April 2016
Page(s) 337 - 360
DOI https://doi.org/10.1051/m2an/2015045
Published online 16 February 2016
  1. F. Albrecht, B. Haasdonk, S. Kaulmann and M. Ohlberger, The localized reduced basis multiscale method. In vol. 1 of Algoritmy 2012 Proc. of contributed papers and posters, edited by A. Handlovičová, Z. Minarechová and D. Devčovič. Publishing House of STU (2012) 393–403. [Google Scholar]
  2. P.F. Antonietti and B. Ayuso, Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: Non-overlapping case. ESAIM: M2AN 41 (2007) 21–54. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  3. P.F. Antonietti and P. Houston, A class of domain decomposition preconditioners for hp-discontinuous Galerkin finite element methods. J. Sci. Comput. 46 (2011) 124–149. [CrossRef] [MathSciNet] [Google Scholar]
  4. P.F. Antonietti, S. Giani and P. Houston, Domain decomposition preconditioners for discontinuous Galerkin methods for elliptic problems on complicated domains. J. Sci. Comput. 60 (2014) 203–227. [CrossRef] [MathSciNet] [Google Scholar]
  5. P.F. Antonietti, A. Manzoni, P Pacciarini and A. Quarteroni, A posteriori error control for discontinuous Galerkin reduced basis element approximations of parametrized elliptic pdes. In preparation (2016). [Google Scholar]
  6. D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742–760. [CrossRef] [MathSciNet] [Google Scholar]
  7. D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339 (2004) 667–672. [Google Scholar]
  9. J.H. Bramble and J. Xu, Some estimates for a weighted L2 projection. Math. Comput. 56 (1991) 463–476. [Google Scholar]
  10. H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York (2011). [Google Scholar]
  11. F. Brezzi, M. Manzini, M. Marini, P. Pietra and A. Russo, Discontinuous finite elements for diffusion problems. In Francesco Brioschi (18241897) Convegno di Studi Matematici, October 22-23, 1997 Ist. Lomb. Acc. Sc. Lett. Incontro di studio N. 16 (1999) 197–217. [Google Scholar]
  12. C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38 (1982) 67–86. [Google Scholar]
  13. Y. Chen, J.S. Hesthaven and Y. Maday, A Seamless Reduced Basis Element Method for 2D Maxwell’s Problem: An Introduction. In Spectral and High Order Methods for Partial Differential Equations. Springer (2011) 141–152. [Google Scholar]
  14. Y. Efendiev, J. Galvis, R. Lazarov, M. Moon and M. Sarkis, Generalized multiscale finite element method. Symmetric interior penalty coupling. J. Comput. Phys. 255 (2013) 1–15. [CrossRef] [Google Scholar]
  15. J.L. Eftang and A.T. Patera, Port reduction in parametrized component static condensation: Approximation and a posteriori error estimation. Int. J. Numer. Methods Eng. 96 (2013) 269–302. [Google Scholar]
  16. J.L. Eftang, A.T. Patera and E.M. Rønquist, An “hp” certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput. 32 (2010) 3170–3200. [CrossRef] [MathSciNet] [Google Scholar]
  17. K. Gao, E. Chung, R. Gibson, S. Fu and Y. Efendiev, Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media. Available at http://arxiv.org/abs/1409.3550 (2014). [Google Scholar]
  18. G.H. Golub and C.F. Van Loan, Matrix computations. Johns Hopkins Studies in the Mathematical Sciences, 4th edition. Johns Hopkins University Press, Baltimore, MD (2013). [Google Scholar]
  19. D.B.P. Huynh, D.J. Knezevic and A.T. Patera, A static condensation Reduced Basis Element method : approximation and a posteriori error estimation. ESAIM: M2AN 47 (2013) 213–251. [CrossRef] [EDP Sciences] [Google Scholar]
  20. D.B.P. Huynh, D.J. Knezevic and A.T. Patera, A static condensation Reduced Basis Element method: Complex problems. Comput. Methods Appl. Mech. Eng. 259 (2013) 197–216. [CrossRef] [Google Scholar]
  21. D.B.P. Huynh, N.C. Nguyen, A.T. Patera and G. Rozza, Rapid reliable solution of the parametrized partial differential equations of continuum mechanics and transport. Available at: http://augustine.mit.edu (2008). [Google Scholar]
  22. L. Iapichino, Reduced Basis Methods for the Solution of Parametrized PDEs in Repetitive and Complex Networks with Application to CFD. Ph.D. thesis, EPF Lausanne (2012). [Google Scholar]
  23. L. Iapichino, A. Quarteroni and G. Rozza, Reduced basis method and domain decomposition for elliptic problems in networks and complex parametrized geometries. Comput. Math. Appl. 71 (2016) 408–430. [CrossRef] [Google Scholar]
  24. L. Iapichino, A. Quarteroni and G. Rozza, A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Comput. Methods Appl. Mech. Eng. 221–222 (2012) 63–82. [CrossRef] [Google Scholar]
  25. S. Kaulmann, M. Ohlberger and B. Haasdonk, A new local reduced basis discontinuous Galerkin approach for heterogeneous multiscale problems. C. R. Math. Acad. Sci. Paris 349 (2011) 1233–1238. [CrossRef] [MathSciNet] [Google Scholar]
  26. A.E. Løvgren, Y. Maday and E.M. Rønquist, A reduced basis element method for the steady Stokes problem. ESAIM: M2AN 40 (2006) 529–552 [CrossRef] [EDP Sciences] [Google Scholar]
  27. A.E. Løvgren, Y. Maday and E.M. Rønquist. A reduced basis element method for the steady Stokes problem: Application to hierarchical flow systems. Model. Identif. Control 27 (2006) 79–94. [CrossRef] [MathSciNet] [Google Scholar]
  28. Y. Maday and E.M. Rønquist, A Reduced-Basis Element method. J. Sci. Comput. 17 (2002) 447–459. [CrossRef] [MathSciNet] [Google Scholar]
  29. Y. Maday and E.M. Rønquist, The reduced basis element method: Application to a thermal fin problem. SIAM J. Sci. Comput. 26 (2005) 240–258. [CrossRef] [MathSciNet] [Google Scholar]
  30. A.T. Patera and G. Rozza, Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations. Version 1.0, Copyright MIT 2006-2007, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering. Available at: http://augustine.mit.edu (2006). [Google Scholar]
  31. A. Quarteroni, Numerical models for differential problems. Vol. 8 of MS&A. Model. Simul. Appl. 2nd edition. Springer, Milan (2014). [Google Scholar]
  32. A. Quarteroni, G. Rozza and A. Manzoni, Certified reduced basis approximation for parametrized partial differential equations and applications. J. Math. Ind. 1 (2011) 3. [CrossRef] [MathSciNet] [Google Scholar]
  33. A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations. An Introduction (2016). [Google Scholar]
  34. G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Methods Eng. State of the Art Reviews 15 (2008) 229–275. [Google Scholar]
  35. R. Stenberg, Mortaring by a method of J.A. Nitsche, In Computational Mechanics (Buenos Aires, 1998). Centro Internac. Métodos Numér. Ing., Barcelona (1998). [Google Scholar]
  36. A. Toselli and O. Widlund, Domain Decomposition Methods – Algorithms and Theory. Vol. 34 of Springer Ser. Comput. Math. Springer-Verlag, Berlin (2005). [Google Scholar]
  37. H. Wang and S. Xiang, On the convergence rates of Legendre approximation. Math. Comput. 81 (2012) 861–877. [CrossRef] [Google Scholar]
  38. M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152–161. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you