Issue |
ESAIM: M2AN
Volume 50, Number 3, May-June 2016
Special Issue – Polyhedral discretization for PDE
|
|
---|---|---|
Page(s) | 651 - 676 | |
DOI | https://doi.org/10.1051/m2an/2015096 | |
Published online | 23 May 2016 |
Interpolation error estimates for harmonic coordinates on polytopes
1 Department of Mathematics, University of Arizona, Tucson,
Arizona, USA
agillette@math.arizona.edu
2
CD-adapco, Austin, Texas,
USA
alexander.rand@cd-adapco.com
Received: 31 March 2015
Revised: 18 December 2015
Interpolation error estimates in terms of geometric quality measures are established for harmonic coordinates on polytopes in two and three dimensions. First we derive interpolation error estimates over convex polygons that depend on the geometric quality of the triangles in the constrained Delaunay triangulation of the polygon. This characterization is sharp in the sense that families of polygons with poor quality triangles in their constrained Delaunay triangulations are shown to produce large error when interpolating a basic quadratic function. Non-convex polygons exhibit a similar limitation: large constrained Delaunay triangles caused by vertices approaching a non-adjacent edge also lead to large interpolation error. While this relationship is generalized to convex polyhedra in three dimensions, the possibility of sliver tetrahedra in the constrained Delaunay triangulation prevent the analogous estimate from sharply reflecting the actual interpolation error. Non-convex polyhedra are shown to be fundamentally different through an example of a family of polyhedra containing vertices which are arbitrarily close to non-adjacent faces yet the interpolation error remains bounded.
Mathematics Subject Classification: 31B05 / 35J05 / 41A30 / 46E35 / 65D05 / 65D18 / 65N15
Key words: Generalized barycentric coordinates / harmonic coordinates / polygonal finite elements / shape quality / interpolation error estimates
© EDP Sciences, SMAI 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.