Issue |
ESAIM: M2AN
Volume 50, Number 3, May-June 2016
Special Issue – Polyhedral discretization for PDE
|
|
---|---|---|
Page(s) | 651 - 676 | |
DOI | https://doi.org/10.1051/m2an/2015096 | |
Published online | 23 May 2016 |
- G. Acosta, Lagrange and average interpolation over 3D anisotropic elements. J. Comput. Appl. Math. 135 (2001) 91–109. [CrossRef] [MathSciNet] [Google Scholar]
- G. Acosta and R.G. Durán, The maximum angle condition for mixed and nonconforming elements: application to the Stokes equations. SIAM J. Numer. Anal. 37 (2000) 18–36. [Google Scholar]
- R.A. Adams, Sobolev Spaces. In vol. 140 of Pure and Applied Mathematics, 2nd edition. Academic Press, Oxford (2003). [Google Scholar]
- P. Antonietti, M. Verani and L. Zikatanov, A two-level method for mimetic finite difference discretizations of elliptic problems. Comput. Math. Appl. 70 (2015) 2674–2687. [CrossRef] [MathSciNet] [Google Scholar]
- T. Apel, Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics. Teubner, Stuttgart (1999). [Google Scholar]
- I. Babuška and A.K. Aziz, On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976) 214–226. [CrossRef] [MathSciNet] [Google Scholar]
- I. Babuška, U. Banerjee and J. Osborn, Meshless and Generalized Finite Element Methods: A Survey of Some Major Results. In Meshfree Methods for Partial Differential Equations. Springer (2002) 1–20. [Google Scholar]
- L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [CrossRef] [Google Scholar]
- L. Beirão da Veiga, F. Brezzi and L.D. Marini, Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. [CrossRef] [Google Scholar]
- L. Beirão da Veiga, F. Brezzi, L. Marini and A. Russo, The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. [CrossRef] [Google Scholar]
- W. Blaschke, Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts. Math. Annal. 76 (1915) 504–513. [Google Scholar]
- P. Bochev and J. Hyman, Principles of Mimetic Discretizations of Differential Operators. In Compatible Spatial Discretizations. Springer (2006) 89–119. [Google Scholar]
- J. Bonelle and A. Ern, Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: M2AN 48 (2014) 553–581. [CrossRef] [EDP Sciences] [Google Scholar]
- J. Bonelle and A. Ern, Analysis of compatible discrete operator schemes for the Stokes equations on polyhedral meshes. IMA J. Numer. Anal. 35 (2015) 1672–1697. [CrossRef] [MathSciNet] [Google Scholar]
- J.H. Bramble and S.R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7 (1970) 112–124. [Google Scholar]
- J. Brandts, S. Korotov and M. Kzříěk, On the equivalence of ball conditions for simplicial finite elements. Appl. Math. Lett. 22 (2009) 1210–1212. [CrossRef] [MathSciNet] [Google Scholar]
- S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Vol. 15 of Texts in Applied Mathematics. Springer, New York, third edition (2008). [Google Scholar]
- F. Brezzi, A. Buffa and G. Manzini, Mimetic scalar products of discrete differential forms. J. Comput. Phys. 257 (2014) 1228–1259. [CrossRef] [MathSciNet] [Google Scholar]
- F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Meth. Appl. Sci. 15 (2005) 1533–1551. [Google Scholar]
- S. Cai and T.J. Tautges, One-to-one sweeping based on harmonic ST mappings of facet meshes and their cages. Engrg. Comput. (2014) 1–14. [Google Scholar]
- A. Cangiani, G. Manzini, A. Russo and N. Sukumar, Hourglass stabilization and the virtual element method. Int. J. Numer. Meth. Engng 1 (2014) 1–33. [Google Scholar]
- L. Chen and J. Xu, Optimal Delaunay triangulation. J. Comput. Math. 22 (2004) 299–308. [MathSciNet] [Google Scholar]
- S.-W. Cheng, T.K. Dey, H. Edelsbrunner, M.A. Facello and S.-H. Teng, Sliver exudation. J. ACM 47 (2000) 883–904. [CrossRef] [MathSciNet] [Google Scholar]
- L.P. Chew, Constrained Delaunay triangulations. Algorithmica 4 (1989) 97–108. [CrossRef] [MathSciNet] [Google Scholar]
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Vol. 40 of Classics in Applied Mathematics, 2nd edition. SIAM, Philadelphia, PA (2002). [Google Scholar]
- M. Costabel, Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19 (1988) 613–626. [CrossRef] [MathSciNet] [Google Scholar]
- E.F. D’Azevedo and R.B. Simpson, On optimal interpolation triangle incidences. SIAM J. Sci. Stat. Comput. 10 (1989) 1063–1075. [CrossRef] [Google Scholar]
- S. Dekel and D. Leviatan, The Bramble–Hilbert lemma for convex domains. SIAM J. Math. Anal. 35 (2004) 1203–1212. [CrossRef] [MathSciNet] [Google Scholar]
- E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Ding, A proof of the trace theorem of Sobolev spaces on Lipschitz domains. Proc. Amer. Math. Soc. 124 (1996) 591–600. [Google Scholar]
- R.G. Durán, Error estimates for 3-d narrow finite elements. Math. Comput. 68 (1999) 187–199. [CrossRef] [Google Scholar]
- H. Edelsbrunner and D. Guoy, An experimental study of sliver exudation. Engrg. With Comput. 18 (2002) 229–240. [CrossRef] [Google Scholar]
- H. Edelsbrunner, X.-Y. Li, G. Miller, A. Stathopoulos, D. Talmor, S.-H. Teng, A. Üngör and N. Walkington. Smoothing and cleaning up slivers. In Proc. of ACM Symp. Theory Comput. (2000) 273–277. [Google Scholar]
- A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). [Google Scholar]
- T. Euler, R. Schuhmann and T. Weiland, Polygonal finite elements. IEEE Trans. Magnetics 42 (2006) 675–678. [CrossRef] [Google Scholar]
- L.C. Evans, Partial Differential Equations. Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (1998). [Google Scholar]
- L.C. Evans and R.F. Gariepy. Measure theory and fine properties of functions. In vol. 5. CRC press (1991). [Google Scholar]
- M. Floater, Mean value coordinates. Comput. Aided Geom. Des. 20 (2003) 19–27. [CrossRef] [Google Scholar]
- M. Floater, A. Gillette and N. Sukumar, Gradient bounds for Wachspress coordinates on polytopes. SIAM J. Numer. Anal. 52 (2014) 515–532. [CrossRef] [MathSciNet] [Google Scholar]
- M. Floater, G. Kós and M. Reimers, Mean value coordinates in 3D. Comput. Aided Geom. Des. 22 (2005) 623–631. [Google Scholar]
- A. Gillette, A. Rand and C. Bajaj, Error estimates for generalized barycentric coordinates. Adv. Comput. Math. 37 (2012) 417–439. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- S. Guattery, G.L. Miller and N. Walkington, Estimating interpolation error: A combinatorial approach. In Proc. of 10th Symp. Discrete Algorithms (1999) 406–413. [Google Scholar]
- A. Hannukainen, S. Korotov and M. Kzříěk, The maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. 120 (2012) 79–88. [CrossRef] [MathSciNet] [Google Scholar]
- K. Hormann and N. Sukumar, Maximum entropy coordinates for arbitrary polytopes. Comput. Graphics Forum 27 (2008) 1513–1520. [CrossRef] [Google Scholar]
- P. Jamet, Estimations d’erreur pour des éléments finis droits presque dégénérés. RAIRO Anal. Numér. 10 (1976) 43–61. [Google Scholar]
- P. Joshi, M. Meyer, T. DeRose, B. Green and T. Sanocki, Harmonic coordinates for character articulation. ACM Trans. Graphics 26 (2007) 71. [Google Scholar]
- T. Ju, P. Liepa and J. Warren, A general geometric construction of coordinates in a convex simplicial polytope. Comput. Aided Geom. Des. 24 (2007) 161–178. [CrossRef] [Google Scholar]
- T. Ju, S. Schaefer and J. Warren, Mean value coordinates for closed triangular meshes. ACM Trans. Graphics 24 (2005) 561–566. [CrossRef] [Google Scholar]
- K. Kobayashi and T. Tsuchiya, A Babuška-Aziz type proof of the circumradius condition. Jpn J. Ind. Appl. Math. 31 (2014) 193–210. [CrossRef] [MathSciNet] [Google Scholar]
- K. Kobayashi and T. Tsuchiya, On the circumradius condition for piecewise linear triangular elements. Japan J. Ind. Appl. Math. 32 (2015) 65–76. [CrossRef] [Google Scholar]
- M. Kzříěk, On semiregular families of triangulations and linear interpolation. Appl. Math. 36 (1991) 223–232. [MathSciNet] [Google Scholar]
- M. Kzříěk, On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29 (1992) 513–520. [CrossRef] [MathSciNet] [Google Scholar]
- T. Lambert, The Delaunay Triangulation Maximizes the Mean Inradius. In Proc. of Canadian Conf. Comput. Geom. Citeseer (1994) 201–206. [Google Scholar]
- C.L. Lawson, Software for C1 Interpolation. In Mathematical Software III, edited by J.R. Rice (1977) 161–194. [Google Scholar]
- A. Lemoine, J.-P. Caltagirone, M. Azaïez and S. Vincent, Discrete Helmholtz–Hodge decomposition on polyhedral meshes using compatible discrete operators. J. Sci. Comput. 65 (2015) 34–53. [CrossRef] [MathSciNet] [Google Scholar]
- N.J. Lennes, Theorems on the simple finite polygon and polyhedron. Amer. J. Math. (1911) 37–62. [Google Scholar]
- G. Leoni, A First Course in Sobolev Spaces. Vol. 105 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2009). [Google Scholar]
- S. Li and W.K. Liu, Meshfree and particle methods and their applications. Appl. Mech. Rev. 55 (2002) 1–34. [CrossRef] [Google Scholar]
- X.-Y. Li, Generating well-shaped d-dimensional Delaunay meshes. Theoret. Comput. Sci. 296 (2003) 145–165. [CrossRef] [MathSciNet] [Google Scholar]
- X.-Y. Li and S.-M. Hu, Poisson coordinates. IEEE Trans. Visualization Comput. Graphics 19 (2013) 344–352. [CrossRef] [Google Scholar]
- K. Lipnikov, G. Manzini and M. Shashkov, Mimetic finite difference method. J. Comput. Phys. 257 (2014) 1163–1227. [Google Scholar]
- G. Manzini, A. Russo and N. Sukumar, New perspectives on polygonal and polyhedral finite element methods. Math. Models Methods Appl. Sci. 24 (2014) 1665–1699. [CrossRef] [MathSciNet] [Google Scholar]
- J. Marschall, The trace of Sobolev-Slobodeckij spaces on Lipschitz domains. Manuscripta Math. 58 (1987) 47–65. [CrossRef] [MathSciNet] [Google Scholar]
- S. Martin, P. Kaufmann, M. Botsch, M. Wicke and M. Gross, Polyhedral finite elements using harmonic basis functions. In Proc. of Symp. Geom. Proc. (2008) 1521–1529. [Google Scholar]
- G.L. Miller, D. Talmor, S.-H. Teng and N. Walkington, On the radius-edge condition in the control volume method. SIAM J. Numer. Anal. (1999) 1690–1708. [Google Scholar]
- L. Mu, J. Wang and X. Ye, Weak Galerkin finite element methods on polytopal meshes. Int. J. Numer. Anal. Model. 12 (2015) 31–53. [MathSciNet] [Google Scholar]
- P.L. Powar, Minimal roughness property of the Delaunay triangulation: A shorter approach. Comput. Aided Geom. Des. 9 (1992) 491–494. [CrossRef] [Google Scholar]
- J. Rambau, On a generalization of Schönhardt’s polyhedron. Combin. Comput. Geom. 52 (2003) 510–516. [Google Scholar]
- A. Rand, Delaunay Refinement Algorithms for Numerical Methods. Ph.D. thesis, Carnegie Mellon University (2009). [Google Scholar]
- A. Rand, Average interpolation under the maximum angle condition. SIAM J. Numer. Anal. 50 (2012) 2538–2559. [CrossRef] [MathSciNet] [Google Scholar]
- A. Rand, A. Gillette and C. Bajaj, Interpolation error estimates for mean value coordinates. Adv. Comput. Math. 39 (2013) 327–347. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- S. Rippa, Minimal roughness property of the Delaunay triangulation. Comput. Aided Geom. Des. 7 (1990) 489–497. [CrossRef] [Google Scholar]
- S. Rippa, Long and thin triangles can be good for linear interpolation. SIAM J. Numer. Anal. 29 (1992) 257–270. [CrossRef] [MathSciNet] [Google Scholar]
- S. Rippa and B. Schiff, Minimum energy triangulations for elliptic problems. Comput. Methods Appl. Mech. Engrg. 84 (1990) 257–274. [CrossRef] [MathSciNet] [Google Scholar]
- E. Schönhardt, Über die zerlegung von dreieckspolyedern in tetraeder. Math. Annal. 98 (1928) 309–312. [Google Scholar]
- N.A. Shenk, Uniform error estimates for certain narrow Lagrange finite elements. Math. Comput. 63 (1994) 105–119. [CrossRef] [Google Scholar]
- J.R. Shewchuk, General-dimensional constrained Delaunay and constrained regular triangulations, I: Combinatorial properties. Discrete Comput. Geom. 39 (2008) 580–637. [CrossRef] [MathSciNet] [Google Scholar]
- R. Sibson, Locally equiangular triangulations. Comput. J. 21 (1978) 243–245. [CrossRef] [MathSciNet] [Google Scholar]
- R. Sibson, A vector identity for the Dirichlet tessellation. Math. Proc. Cambridge Philos. Soc. 87 (1980) 151–155. [Google Scholar]
- N. Sukumar, Construction of polygonal interpolants: a maximum entropy approach. Int. J. Numer. Methods Eng. 61 (2004) 2159–2181. [Google Scholar]
- N. Sukumar and R. Wright, Overview and construction of meshfree basis functions: From moving least squares to entropy approximants. Int. J. Numer. Methods Eng. 70 (2007) 181–205. [CrossRef] [Google Scholar]
- N. Sukumar, B. Moran, A. Semenov and V. Belikov, Natural neighbour Galerkin methods. Int. J. Numer. Meth. Engng 50 (2001) 1–27. [CrossRef] [Google Scholar]
- J.L. Synge, The Hypercircle in Mathematical Physics. Cambridge University Press, Cambridge (1957). [Google Scholar]
- A. Tabarraei and N. Sukumar, Application of polygonal finite elements in linear elasticity. Int. J. Comput. Methods 3 (2006) 503–520. [CrossRef] [MathSciNet] [Google Scholar]
- R. Verfürth, A note on polynomial approximation in Sobolev spaces. Math. Model. Numer. Anal. 33 (1999) 715–719. [Google Scholar]
- E. Wachspress, A Rational Finite Element Basis. Vol. 114 of Mathematics in Science and Engineering. Academic Press, New York (1975). [Google Scholar]
- J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241 (2013) 103–115. [CrossRef] [MathSciNet] [Google Scholar]
- J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comput. 83 (2014) 2101–2126. [Google Scholar]
- J. Warren, Barycentric coordinates for convex polytopes. Adv. Comput. Math. 6 (1996) 97–108. [CrossRef] [MathSciNet] [Google Scholar]
- J. Warren, S. Schaefer, A.N. Hirani and M. Desbrun, Barycentric coordinates for convex sets. Adv. Comput. Math. 27 (2007) 319–338. [CrossRef] [MathSciNet] [Google Scholar]
- M. Wicke, M. Botsch and M. Gross, A finite element method on convex polyhedra. Comput. Graphics Forum 26 (2007) 355–364. [CrossRef] [Google Scholar]
- O. Zienkiewicz and R. Taylor, The Finite Element Method, 5th edition. Butterworth-Heinemann, London (2000). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.