Free Access
Issue |
R.I.R.O.
Volume 4, Number R1, 1970
|
|
---|---|---|
Page(s) | 9 - 45 | |
DOI | https://doi.org/10.1051/m2an/197004R100091 | |
Published online | 01 February 2017 |
- ARROW HURWITCZ, Studies in linear and non linear programming, Stanford University Press. [Zbl: 0091.16002] [Google Scholar]
- AUSLENDER, Algorithme de recherche de points stationnaires d'une fonctionnelle dans E.V.T., C.R.A.S., t. 226, pp. 226-229 (22 janvier 1968). [Zbl: 0172.13405] [Google Scholar]
- [2 bis] AUSLENDER, Méthodes numériques pour la résolution des problèmes d'optimisation avec contraintes, thèse Faculté des Sciences, Grenoble. [Google Scholar]
- BARANOV-TRUKHEV, The basis on the umbebbing method in variationnal problems, Leningrad Translated from Automatika i Telemekanika, n° 7, pp. 10-14, July 1967. [Zbl: 0214.39704] [Google Scholar]
- T. BUTTLER and MARTIN, « On a method of courant for minimizing functionnals », Journal of Mathematical Physic, 41, n° 3, 1962, pp. 291-299. [MR: 142022] [Zbl: 0116.08001] [Google Scholar]
- BREGMAN, The method of successive projections for finding a common point of convex sets. [Zbl: 0142.16804] [Google Scholar]
- CHENEY-GOLDSTEIN, Numerisch Mathematic, n° 5, 1959, pp. 253-259. [Google Scholar]
- DUNFORD and SCHWARTZ, Linear Operators, part. 1. [Google Scholar]
- GHOUILA-HOURI, « Sur la généralisation de la notion de commande de système guidable », R.I.R.O., n° 4, juillet-août 1967. [Zbl: 0153.20403] [Google Scholar]
- KRYOSHINA-OKAMURA, Some mathematical theory of penality method for solving optimum control problem, Siam Control, série A, vol. 2, n° 2, 1963. [Zbl: 0133.36702] [Google Scholar]
- KOOP, Several trajectories optimisation techniques computing methods in optimisation problems, edited by A.V. Balakrishman Academic Press, 1964. [Google Scholar]
- LEGENDRE, Projet d'ingénieur fin d'études, I.P.G., Grenoble, 1969, à paraître. [Google Scholar]
- McGILL, Optimal control, inequalities state constraints and the generalized Newton Ralphson algorithm, Siam control, Ser. A, vol. 3, n° 2. [Zbl: 0133.38901] [Google Scholar]
- MEZLYAKOV, « On a relaxation method for solving Systems of linear inequalities », Journal of Mathematic and Physics, 2, n° 3, 1962. [Zbl: 0123.11204] [Google Scholar]
- MOTZKIN, SCHOENBERG, « The relaxation method for linear inequalities », Canadian Journal of Mathematics, vol. 6, 1954. [MR: 62787] [Zbl: 0055.35002] [Google Scholar]
- MOVCHOVTCHY, « Sur une méthode de résolution de problème linéaires et convexe » (en russe), Economica et méthodes mathématiques, 1967, t. 3, n° 4. [Google Scholar]
- POLJACK-LEVITIN, Constrained minimization methods, Zh, Vychisl, Mat. mat Fiz, 6, 5, 781-823, 1966. [Zbl: 0184.38902] [Google Scholar]
- PSHENICHYII, A dual method in extremal problems I and II, Kibernetika, 1, 1965, n° 3, pp. 89-95, n° 4, pp. 64-69. [MR: 204161] [Google Scholar]
- RUSSEL, Penalty functions and bounded phase coordinate, J. Siam Control, Ser. A 2 (1964), pp. 409-423. [Zbl: 0133.36802] [Google Scholar]
- VALENTINE, Convex sets, Mac Graw Hill. [Zbl: 0129.37203] [Google Scholar]
- VILLEMAIN, thèse de 3e cycle, à paraître Institut de Mathématiques Appliquées, Grenoble. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.