Free Access
Issue |
R.A.I.R.O.
Volume 7, Number R3, 1973
|
|
---|---|---|
Page(s) | 5 - 31 | |
DOI | https://doi.org/10.1051/m2an/197307R300051 | |
Published online | 01 February 2017 |
- VARGA R. S., Matrix itérative analysis, Prentice Hall, Englewood Cliffs, New Jersey, 1962. [MR: 158502] [Zbl: 0133.08602] [Google Scholar]
- ORTEGA J. M. et RHEIBOLDT W. C., Monotone iterations for non linear equation with application to Gauss-Seidel method. SIAM J. of Num. Anal., vol. 4, n° 2, 1967. [Google Scholar]
- ORTEGA J. M. et RHEIBOLDT W. C., Iterative solution of non linear equations in several variables, Academic Press, 1970. [Google Scholar]
- MIELLOU J. C., C.R.A.S., 273, série A, 1971, p.1257-1260. [Google Scholar]
- MIELLOU J. C., C.R.A.S., 275, série A, 1972, p. 1107-1110. [Google Scholar]
- SCHECHTER S., Iterations method for non linear problems, Trans A.M.S., 104, p. 179-189, 1962. [Zbl: 0106.31801] [Google Scholar]
- SCHECHTER S., Relaxation method for convex problems, SIAM J. of Num. Anal., vol. 5, 1968, p. 601-612. [MR: 247766] [Zbl: 0179.22701] [Google Scholar]
- SCHECHTER S., Minimization of convex functions by relaxation, ch. 7 de Integer and non linear programing. Abadie editor, North Holland, 1970, p. 177-189. [MR: 436594] [Zbl: 0346.90037] [Google Scholar]
- CEA J., Recherche numérique d'un optimum dans un espace produit. Lectures Notes in Mathematics, Springer Verlag, 112, Colloquium on Methods of Optimization, 1970. [Zbl: 0202.16401] [Google Scholar]
- CEA J., Optimisation, théorie et algorithme, Dunond, 1971. [Zbl: 0211.17402] [Google Scholar]
- AUSLENDER A., Méthodes numériques pour la décomposition et la minimisation de fonctions non différentiables, Numer. Math., 18, 213-223, 1972. [EuDML: 132104] [MR: 359795] [Zbl: 0215.27504] [Google Scholar]
- CHRISTOPHERSON D. G., A New Mathematical method for the solution of Film Lubrification Problems, Proc. Inst. Mech. Engrgs, 146, 1941, p. 126-135. [MR: 6295] [Zbl: 0063.00888] [Google Scholar]
- CRYER C. W., The Method of Christopherson for Solving Free Boundary problems for Infinite Journal Beavings by Means of Finite Differences. Math. Comp., 25, 1971, p. 435-443. [MR: 298961] [Zbl: 0223.65044] [Google Scholar]
- CRYER C. W., The solution of a quadratic programing problem using systematic over relaxation, SIAM J. of Control, vol. 9, n° 3, Aug. 1971, p. 385-392. [MR: 298922] [Zbl: 0201.22202] [Google Scholar]
- GLOWINSKI R., La Méthode de Relaxation, Rendiconti di Matematica, 14, Univ. de Rome, 1971. [Google Scholar]
- YOSIDA K., Functional Analysis, Springer Verlag, 1968. [Zbl: 0152.32102] [Google Scholar]
- BREZIS H. et STAMPACCHIA G., Sur la régularité de la solution d'inéquations elliptiques, Bull. de la Soc., Mathématiques de France, t. 96, 1968, p. 153-180. [EuDML: 87105] [Zbl: 0165.45601] [Google Scholar]
- LANCHON H., C.R.A.S., 269, série A, 1969, p. 791-794. [Google Scholar]
- LANCHON H. et DUVAUT G., C.R.A.S., 264, série A, 1967, p. 520-523. [Google Scholar]
- BREZIS H. et SIBONY M., Equivalence de deux Inéquations variationnelles et Applications, Arch. Rat. Mech. Analysis, vol. 41, Number 4, 1971, p. 254-265. [MR: 346345] [Zbl: 0214.11104] [Google Scholar]
- CEA J.,GLOWINSKI R. et NEDELEC J. C., Méthodes Numériques pour le problème de la Torsion Elasto-Plastique d'une barre cylindrique, à paraître aux Cahiers de l'I.R.I.A., 1973. [Google Scholar]
- BOURGAT J. F., Thèse de 3e cycle, Paris VI, 1971. [Google Scholar]
- GOURSAT M., Thèse de 3e cycle, Paris VI, 1971. [Google Scholar]
- CEA J., Approximation variationnelle des problèmes aux limites. Ann. Inst. Fourier, 14, 2, 1964. [EuDML: 73844] [MR: 174846] [Zbl: 0127.08003] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.