Free Access
Issue
R.A.I.R.O.
Volume 7, Number R3, 1973
Page(s) 33 - 75
DOI https://doi.org/10.1051/m2an/197307R300331
Published online 01 February 2017
  1. BAZELEY G. P.,CHEUNG Y. K., IRONS B. M. et ZIENKIEWICZ O. C., Triangular elements in bending-conforming and nonconforming solutions, Proc. Conf. Matrix Methods in Structural Mechanics, Air Forces Inst. of Tech., Wright Patterson A. F. Base, Ohio, 1965.
  2. BOLLEY P. et CAMUS J., (to appear).
  3. BRAMBLE J. H. et HILBERT S. R., Estimations of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation, J. Numer. Anal., 7, 1970, 112-124. [MR: 263214] [Zbl: 0201.07803]
  4. CATTABRIGA L., Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Padova, 1961, 1-33. [EuDML: 107065] [Zbl: 0116.18002]
  5. CIARLET P. G. et RAVIART P.-A., General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods, Arch. Rat. Mech. Anal., 46, 1972, 177-199. [MR: 336957] [Zbl: 0243.41004]
  6. CIARLET P. G. et RAVIART P.-A., Interpolation theory over curved elements with applications to finite element methods, Computer Meth. Appl. Mech. Engin., 1, 1972, 217-249. [MR: 375801] [Zbl: 0261.65079]
  7. CIARLET P. G. et RAVIART P.-A., The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed.), 409-474, Academic Press, New-York, 1972. [MR: 421108] [Zbl: 0262.65070]
  8. FORTIN M., Calcul numérique des écoulements des fluides de Bingham et des fluides newtoniens incompressibles par la méthode des éléments finis, Thèse, Université de Paris VI, 1972.
  9. FORTIN M., Résolution des équations des fluides incompressibles par la méthode des éléments finis (to appear in Proc. 3rd Int. Conf. on the Numerical Methods in Fluid Mechanics, Paris, July 3-7, 1972, Springer Verlag).
  10. IRONS B. M et RAZZAQUE A., Experience with the pach test for convergence of finite elements, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed.), 557-588, Academic Press, New-York, 1972. [MR: 423839] [Zbl: 0279.65087]
  11. JAMET P. et RAVIART P.-A., Numerical Solution of the Stationary Navier-Stokes equations by finite element methods (to appear). [Zbl: 0285.76007]
  12. LADYZHENSKAYA O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New-York, 1962. [Zbl: 0121.42701]
  13. LIONS J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. [MR: 259693] [Zbl: 0189.40603]
  14. DE RHAM, Variétés différentiables, Hermann, Paris, 1960. [Zbl: 0089.08105]
  15. STRANG G. et FIX G., An Analysis of the Finite Element Method, Prentice Hall, New-York, 1973. [Zbl: 0356.65096]
  16. ZIENKIEWICZ O. C., The Finite Element Method in Engineering Science, Mc Graw Hill, London, 1971. [Zbl: 0237.73071]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you