Free Access
R.A.I.R.O. Analyse Numérique
Volume 8, Number R2, 1974
Page(s) 67 - 93
Published online 01 February 2017
  1. CIARLET P. G. et RAVIART P. A., General Lagrange and Hermite interpolation in Rn with applications to finite element methods. Arch. Rational. Mech. Anal., 46, (1972), 177-199. [MR: 336957] [Zbl: 0243.41004] [Google Scholar]
  2. CIARLET P. G. et RAVIART P. A., Interpolation theory over curved elements with applications to finite element methods. Computer Methods in Applied Mechanics and Engineering 1 (1972), 217-249. [MR: 375801] [Zbl: 0261.65079] [Google Scholar]
  3. CIARLET P. G. et RAVIART P. A., The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. The Mathematical Foundations of the Finite Element Method with Applicationsto Partial Differential Equations. (A. K. Aziz, ed.) 409-474, Academic Press, New York, 1972. [MR: 421108] [Zbl: 0262.65070] [Google Scholar]
  4. DUPONT T., Galerkin methods for first order hyperbolics: an example. Siam J. Numer. Anal. Vol. 10, n° 5 (1973). [MR: 349046] [Zbl: 0237.65070] [Google Scholar]
  5. FRIEDRICHS K. O., Symmetric positive differential equations. Comm. on pure and appl. math. II (1958), 333-418. [MR: 100718] [Zbl: 0083.31802] [Google Scholar]
  6. KAPER H. G.,LEAF G. K. and LINDEMAN A. J., Application of finite element techniques for the numerical solution of the neutron transport and diffusion equations, Proceedings of Second Conference on Transport Theory, USAEC DTIE CONF-710302 (1971), 258-285. [Google Scholar]
  7. LATHROP K. D., Spatial differencing of the Transport equation : Positivity VS. Accuracy. Journ. of Comp. Physics 4 (1969), 475-498. [Zbl: 0199.50703] [Google Scholar]
  8. LATHROP K. D., Transport theory numerical methods. Submitted to American Nuclear Society Topical Meeting on Mathematical Models and Computational Techniques for Analysis of Nuclear Systems (1973) LA-UR-73-517, Los Alamos Scientific Laboratory (1973). [Google Scholar]
  9. LATHROP K. D. and CARLSON B. G., Numerical Solution of the Boltzmann Transport Equation. Journ. of Comp. Physics 2 (1967), 173-197. [MR: 241013] [Zbl: 0171.13902] [Google Scholar]
  10. LATHROP K. D. and CARLSON B. G., Transport Theory. The method of Discrete Ordinates. Computing Methods in Reactor Physics (Greenspan, H., C. N. Kelerband D. Okrent, editors), 165-266, Gordon and Breach, 1968. [Google Scholar]
  11. LESAINT P., Finite element methods for symmetric hyperbolic equations. Numer. Math. 21(1973), 244-255. [EuDML: 132230] [MR: 341902] [Zbl: 0283.65061] [Google Scholar]
  12. LESAINT P. et GERIN-ROZE J., Isoparametric finite element methods for the neutron transport equation.To appear in Int. Jl. Num. Meth. Eng. [Zbl: 0331.65084] [Google Scholar]
  13. LESAINT P. et RAVIART P. A., On a finite element method for solving the neutron transport equation.To appear. [Zbl: 0341.65076] [Google Scholar]
  14. MILLER W. F. Jr.,LEWIS E. E. and Rossow E. C., The application of phase-pace finite elements to the two dimensional transport equation in x - y geometry. Nucl. Sci.and Eng. 52, 12 (1973). [Google Scholar]
  15. ONISHI T., Application of finite element solution technique to neutron diffusion and transport equations. Proceedings of Conf. on new developments in Reactor Mathematics and Applications, USAEC DTIE CONF-710107, 258 (1971). [Google Scholar]
  16. PHILIPPS R. S. and LEONARD SARASON, Singular symmetric positive first order differential operators. Journal of Mathematics and Mechanics 15 (1966), 235-271. [MR: 186902] [Zbl: 0141.28701] [Google Scholar]
  17. REED W. H. and HILL T. R., Triangular mesh methods for the neutron transport equation. Submitted to American Nuclear Society Topical Meeting on Mathematical Models and Computational Techniques for Analysis of Nuclear Systems (1973). LA UR-73-479, Los Alamos Laboratory, 1973. [Google Scholar]
  18. STRANG G. and Fix G., An analysis of finite element method, Prentice Hall, New York, 1973. [MR: 443377] [Zbl: 0356.65096] [Google Scholar]
  19. ZIENKIEWICZ O. C, The Finite Element Method in Engineering Science. MacGraw-Hill, London, 1971. [MR: 315970] [Zbl: 0237.73071] [Google Scholar]
  20. GIRAULT V., Theory of a finite difference method on irregular networks. Siam J. Numer. Anal., vol. 11, N. 2, March 1974. [MR: 431730] [Zbl: 0296.65049] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you