Free Access
R.A.I.R.O. Analyse Numérique
Volume 10, Number R1, 1976
Page(s) 5 - 27
Published online 01 February 2017
  1. BARNHILL R. E. et WHITEMAN J. R., Error Analysis of Finite Element Methods with Triangles for Elliptic Boundary Value Problems, The mathematics of Finite Elements and Applications (J. R. Whiteman, ed.), 83-112, Acad. Press (1973). [Zbl: 0284.65087] [Google Scholar]
  2. BRAMBLE J. H. et HILBERT S. R., Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation, SIAM J. Numer. Anal, 7, 112-124 (1970). [MR: 263214] [Zbl: 0201.07803] [Google Scholar]
  3. BRAMBLE J. H. et HILBERT S. R., Bounds for a Class of Linear Functionals with Applications to Hermite Interpolation, Numer. Math., 16,362-369 (1971). [EuDML: 132041] [MR: 290524] [Zbl: 0214.41405] [Google Scholar]
  4. CIARLET P. G. et RAVIART P. A., General Lagrange and Hermite Interpolation in R with Applications to Finite Element Methods, Arch. Rat. Mech. Anal., 46, 177-199 (1972). [MR: 336957] [Zbl: 0243.41004] [Google Scholar]
  5. CIARLET P. G. et RAVIART P. A., Interpolation Theory over Curved Elements with Applications to Finite Element Methods, Comp. Meth. Appl. Mech. Engin., 1, 217-249 (1972). [MR: 375801] [Zbl: 0261.65079] [Google Scholar]
  6. CIARLET P. G. et WAGSCHAL C, Multipoint Taylor Formulas and Applications to Finite Element Method, Numer Math, 17, 84-100 (1971) [EuDML: 132060] [MR: 287666] [Zbl: 0199.50104] [Google Scholar]
  7. CHENIN P, These 3e cycle, Grenoble (1974) [Google Scholar]
  8. COATMELEC C, Approximation et interpolation des fonctions différentiables de plusieurs variables, Ann Sc École Norm Sup (3) 83,271-341 (1966) [EuDML: 81826] [MR: 232143] [Zbl: 0155.10902] [Google Scholar]
  9. DESCLOUX J, Méthode des éléments finis, Ecole polytéchnique fédérale de Lausanne (1973) [Zbl: 0331.65074] [Google Scholar]
  10. MEINGUET J, Realistic Estimates for Generic Constants in Multivariate Pointwise Approximation, Topics in Numerical Analysis II, J J H Miller ed , Acad Press (1975) [MR: 422972] [Zbl: 0346.65010] [Google Scholar]
  11. NE_AS J, Les méthodes directes en théorie des équations élliptiques, Masson (1967) [Google Scholar]
  12. RAVIART P A, Méthodes des éléments finis, rédige par J M Thomas, D E AAnalyse Numérique, Pans VI (1971-1972) [Google Scholar]
  13. STRANG G, Approximation in the Finite Element Method, Numer Math , 19, 81-98 (1972) [EuDML: 132133] [MR: 305547] [Zbl: 0221.65174] [Google Scholar]
  14. STROUD A H, Approximate Calculation of Multiple Intégrals, Prentice Hall (1971) [MR: 327006] [Zbl: 0379.65013] [Google Scholar]
  15. ZIENKIEWICZ O C, La méthode des éléments finis, Ediscience, Paris (1973) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you