Free Access
Issue
R.A.I.R.O. Analyse Numérique
Volume 10, Number R3, 1976
Page(s) 51 - 79
DOI https://doi.org/10.1051/m2an/197610R300511
Published online 01 February 2017
  1. 1. F. BRÉZZI, On the Existence, Uniqueness and Approximation of Saddle-point Problems Arising from Lagrangian Multipliers, R.A.I.R.O., R 2, 1974, p. 129 à 151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  2. 2. F. BRÉZZI, Sur une méthode hybride pour l'approximation du problème de la torsion d'une barre élastique, Istituto Lombardo (Rend. Sc.), A 108, 1974, p. 274 à 300. [MR: 378556] [Zbl: 0351.73081] [Google Scholar]
  3. 3. P.-G. CIARLET, Numerical Analysis ofthe Finite Element Method (à paraître chez North-Holland). [MR: 1115235] [Google Scholar]
  4. 4. P.-G. CIARLET et P.-A. RAVIART, General Lagrange and Hermite Interpolation in Rn with Applications to Finite Element Methods, Arch. Rat. Mech. Anal., vol. 46, 1972, p. 177 à 189. [MR: 336957] [Zbl: 0243.41004] [Google Scholar]
  5. 5. F. DE VEUBEKE, Variational Principles and the Patch Test, Int. Num. Meth. Eng., vol. 8, 1974, p. 783 à 801. [MR: 375911] [Zbl: 0284.73043] [Google Scholar]
  6. 6. J.-L. LIONS et E. MAGENES, Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968. [MR: 247243] [Zbl: 0165.10801] [Google Scholar]
  7. 7. J. NE_AS, Les méthodes directes dans la théorie des équations elliptiques, Éditions de l'Académie Tchécoslovaque de Sciences, Prague, 1967. [Google Scholar]
  8. 8. T. H. H. PIAN, Formulations of Finite Element Methods for Solid Continua, Recent Advances in Matrix Methods of Structural Analysis and Design, (R. H. Gallagher, Y. Yamada, J. T. Oden Ed.), The Univ. of Alabama Press, 1971, p. 49 à 83. [Zbl: 0245.73066] [Google Scholar]
  9. 9. T. H. H. PIAN, Finite Element Formulation by Variational Principles with Relaxed Continuity Requirements, The Mathematical Foundations of the Finite Element Method (A. K. Aziz, Ed.), Academic Press, 1972, p. 671 à 687. [MR: 413552] [Zbl: 0274.65033] [Google Scholar]
  10. 10. T. H. H. PIAN et P. TONG, Basis of Finite Element Methods for Solid Continua, Int. J. Numer. Meth. Eng., vol. 1, 1969, p. 3 à 28. [Zbl: 0252.73052] [Google Scholar]
  11. 11. P. A. RAVIART, Hybrid Finite Element Methods for solving 2nd Order Elliptic Equations, Conference on Numerical Analysis, Royal Irish Academy, Dublin, 1974. [Zbl: 0339.65061] [Google Scholar]
  12. 12. P.-A. RAVIART et J.-M. THOMAS, Primal Hybrid Finite Element Methods for 2nd Order Elliptic Equations (à paraître). [Zbl: 0364.65082] [Google Scholar]
  13. 13. G. STRANG et G. FIX, An Analysis of the Finite Element Method, Prentice Hall, 1973. [MR: 443377] [Zbl: 0356.65096] [Google Scholar]
  14. 14. J.-M. THOMAS, Éléments finis de type PIAN, Séminaire Ciarlet-Glowinski-Raviart, Université Pierre-et-Marie-Curie, Paris, 1974. [Google Scholar]
  15. 15. J.-M. THOMAS, Méthode des éléments finis équilibre, Journées éléments finis. Rennes, 12, 13 et 14 mai 1975. [MR: 568862] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you