Free Access
Issue
RAIRO. Anal. numér.
Volume 11, Number 2, 1977
Page(s) 181 - 196
DOI https://doi.org/10.1051/m2an/1977110201811
Published online 01 February 2017
  1. 1. J. H. BRAMBLE, S. R. HILBERT, Bounds on a class of linear functionals with applications to Hermite interpolation, Numer. Math., Vol. 16, 1971, pp. 362-369. [EuDML: 132041] [MR: 290524] [Zbl: 0214.41405] [Google Scholar]
  2. 2. J. FREHSE Eine a-priori-Abschätzung zur Methode der finiten Elemente in der numerischen Variationsrechnung.In : Numerische Behandlung von Variations-und Steuerungsproblem, Tagungsband, Bonn. Math. Schr., Vol. 77, 1975, pp. 115-126. [MR: 405884] [Zbl: 0316.65027] [Google Scholar]
  3. 3. J. FREHSE, Eine gleichmaige asymptotische Fehlerabschätzung zur Methode der finiten Elemente bei quasilinearen Randwertproblemen. In : Theory of Nonlinear Operators. Constructive Aspects, Tagungsband der Akademie der Wissenschaften, Berlin (DDR), 1976. [Zbl: 0368.65054] [Google Scholar]
  4. 4 J FREHSE, R RANNACHER, Eine L1-Fehlerabschatzung fur diskrete Grundlosungen in der Methode der finiten Elemente In Finite Elemente, Tagungsband, Bonn Math Schr, Vol 89, 1976, pp 92-114 [Zbl: 0359.65093] [Google Scholar]
  5. 5 C JOHNSON, V THOMEE, Error estimates for a finite element approximation of a minimal surface, Math Comp , Vol 29, 1975, pp 343-349 [MR: 400741] [Zbl: 0302.65086] [Google Scholar]
  6. 6 H D MITTELMANN, On pointwise estimates for a finite element solution of nonlinear boundary value problems To appear [MR: 445865] [Zbl: 0367.65059] [Google Scholar]
  7. 7 C B MORREY, Multiple intégrals in the calculus of variations Springer Berlm-Heidelberg-New York, 1966 [MR: 202511] [Zbl: 0142.38701] [Google Scholar]
  8. 8 F NATTERER, Uber die punktweise Konvergenz finiter Elemente Numer Math,Vol 25 1975 pp 67-77 [EuDML: 132361] [MR: 474884] [Zbl: 0331.65073] [Google Scholar]
  9. 9J NECAS, Les méthodes directes en théorie des équations elliptiques Masson, Paris, 1967 [Google Scholar]
  10. 10 J NITSCHE, Lineare Spline-Funktionen und die Methode von Ritz fur elliptische Randweirtaufgaben Arch Rational Mech Anal, Vol 36, 1970, pp 348-355 [MR: 255043] [Zbl: 0192.44503] [Google Scholar]
  11. 11 J NITSCHE, $L_\infty $-convergence of finite element approximation 2 Conference on Finite Eléments, Rennes (France), 1975 [MR: 568857] [Google Scholar]
  12. 12 R RANNACHER, Zur $L^\infty $-Konvergenz linearer finiter Elemente Math Z, Vol 149, 1976 pp 69-77 [EuDML: 172382] [MR: 488859] [Zbl: 0321.65055] [Google Scholar]
  13. 13 R SCOTT, Optimal Lx-estimates Jot the finite element method on irregular meshes Math Comp, Vol 30, 1976 [MR: 436617] [Zbl: 0349.65060] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you