Free Access
Issue |
RAIRO. Anal. numér.
Volume 11, Number 2, 1977
|
|
---|---|---|
Page(s) | 197 - 208 | |
DOI | https://doi.org/10.1051/m2an/1977110201971 | |
Published online | 01 February 2017 |
- 1. A. BERGER, R. SCOTT, G. STRANG, Approximate boundary conditions in the finite element method, Symposium on Numer. Anal. I.N.A.M. Roma. Symposia Mathematica Academic Press, 1973. [MR: 403258] [Zbl: 0266.73050] [Google Scholar]
- 2. J. H. BRAMBLE, M. ZLAMAL, Triangular elements in the finite element method, Math.Comp., Vol. 24, 1970, pp. 809-820. [MR: 282540] [Zbl: 0226.65073] [Google Scholar]
- 3. H. BREZIS, Problèmes unilatéraux, (Thèse), J. Math. Pures AppL, 1972. [MR: 428137] [Zbl: 0237.35001] [Google Scholar]
- 4. R. W. COTTLE, R. S. SACHER, On the solution of large, structured linear complementarity problems : I, Tecn. Rep. 73-4 Stanford Univ. California. [Google Scholar]
- 5. R. W. COTTLE, G. H. GOLUB, R. S. SACHER, On the solution of large, structured linear complementarity problems: III, Tecn. Rep. 74-7 Stanford Univ. California. [Google Scholar]
- 6. R. W. COTTLE, Complementarity and variational problems, Tecn. Rep. 74-6 StanfordUniv. California. [Google Scholar]
- 7. R. W. COTTLE, Computational experience with large-scale linear complementarity problems, Tecn. Rep. 7-13 Stanford Univ. California. [Google Scholar]
- 8. G. DUVAUT, J. L. LIONS, Les inéquations en mécanique et en physique, Dunod, Paris, 1972. [MR: 464857] [Zbl: 0298.73001] [Google Scholar]
- 9. R. S. FALK, Error estimates for the Approximation of a class of Variational Inequalities, Math, of Comp., Vol. 28, 1974, pp. 963-971. [MR: 391502] [Zbl: 0297.65061] [Google Scholar]
- 10. M. FIEDLER, V. PTAK, On matrices with non-positive off-diagonal elements and positive principal minors, Czech. Math. J., Vol. 12, 1962, pp. 382-400. [EuDML: 12135] [MR: 142565] [Zbl: 0131.24806] [Google Scholar]
- 11.R. GLOWINSKI, J. L. LIONS, R. TREMOLIERES, Book in print on the numerical analysis of the variational inequalities. Dunod, Paris. [Zbl: 0508.65029] [Google Scholar]
- 12. C. LEVATI, F. SCARPINI, G. VOLPI, Sul trattamento numerico di alcuni problemi variazionali di tipo unilaterale, L.A.N, del C.N.R., Vol. 82, 1974. [Zbl: 0359.35001] [Google Scholar]
- 13. J. L. LIONS, G. STAMPACCHIA, Variational inequalities, Comm. Pure Appl. Math.,Vol. 20, 1967, pp. 493-519. [MR: 216344] [Zbl: 0152.34601] [Google Scholar]
- 14. J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. [MR: 259693] [Zbl: 0189.40603] [Google Scholar]
- 15. J. L. LIONS, E. MAGENES, Non-homogeneous boundary value problems and applications, I, II, III Springer., Berlin, 1972. [Zbl: 0227.35001] [Google Scholar]
- 16. U. Mosco, An introduction to the approximate solution of variational inequalities, Constructive Aspects of functional Analysis. Corso C.I.M.E. 1971 Cremonese Roma, 1973, [Zbl: 0266.49005] [Google Scholar]
- 17. U. Mosco, F. SCARPINI, Complementarity Systems and approximation of variational inequalities, R.A.I.R.O. R.l 1975, pp. 83-104. [EuDML: 193266] [MR: 468153] [Zbl: 0338.49016] [Google Scholar]
- 18. U. Mosco, G. STRANG, One sided approximation and variational inequalities, Bull. A.M.S., Vol. 80, 1974, pp. 308-312. [MR: 331818] [Zbl: 0278.35026] [Google Scholar]
- 19. U. Mosco, G. TROIANIELLO, On the smoothness of solutions of unilateral Dirichlet problems, Boll. U.M.I., Vol. 8, 1973, pp. 56-67. [MR: 390479] [Zbl: 0277.35033] [Google Scholar]
- 20. J. NECAS, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967 . [MR: 227584] [Google Scholar]
- 21. R. S. SACHER, On the solution of large, structured linear complementarity problems: II, Teen. Rep. 73-5 Stanford Univ. California. [Google Scholar]
- 22. F. SCARPINI, Some algorithms solving the unilatéral Dirichlet problem with two constraints. Calcolo, Vol. 12, 1975, pp. 113-149. [MR: 426458] [Zbl: 0334.49004] [Google Scholar]
- 23. G. STAMPACCHIA, Variational inequalities, Theory and applications of monotone operators (Ghizzetti, A. ed.) Proceed. of NATO Advanced Study. Venice, 1968. [MR: 425699] [Zbl: 0247.47050] [Google Scholar]
- 24. G. STRANG, A. E. BERGER, The change in solution due to change in domain, Proc. A.M.S. Symposium on partial differential equations. Berkeley, 1971. [Zbl: 0259.35020] [Google Scholar]
- 25. G. STRANG, Approximation in the finite element method, Numer. Math., Vol. 19, 1972, pp. 81-98. [EuDML: 132133] [MR: 305547] [Zbl: 0221.65174] [Google Scholar]
- 26. G. STRANG, G. J. FIX, An analysis of the finite element method, Prentice-Hall, 1973. [MR: 443377] [Zbl: 0356.65096] [Google Scholar]
- 27. F. TREVES, Topological vector spaces, distributions and kernels, Academic Press. New-York, 1967 . [MR: 225131] [Zbl: 0171.10402] [Google Scholar]
- 28. M. M. VAINBERG, Variational methods for the study of nonlinear operators, Holden-Day, San Francisco, 1964. [MR: 176364] [Zbl: 0122.35501] [Google Scholar]
- 29. M. ZLAMAL, Curved elements in the finite element method I, SIAM J. Numer. Anal. 10, 1973, 229-240 [MR: 395263] [Zbl: 0285.65067] [Google Scholar]
- 30. M. ZLAMAL, Curved elements in the finite element method II, SIAM J. Numer.Anal. 11, 1974,347-362. [MR: 343660] [Zbl: 0277.65064] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.