Free Access
Issue
RAIRO. Anal. numér.
Volume 12, Number 1, 1978
Page(s) 3 - 26
DOI https://doi.org/10.1051/m2an/1978120100031
Published online 01 February 2017
  1. J. H. ARGYRIS et D. W. SCHARPF1. The Scheba Family of Shell Elements for the Matrix Displacement Method, Aeronaut. J. Roy. Aeronaut. Soc., vol. 72, 1968, p. 873-883; [Google Scholar]
  2. J. H. ARGYRIS et D. W. SCHARPF 2. Matrix Displacement Analysis of Shells and Plates Including Transverse Shear Strain Effects, Computer Methods in Applied Mechanics and Engineering, vol. 1, 1972, p. 81-139. [MR: 375906] [Zbl: 0258.73038] [Google Scholar]
  3. K. BELL 1. A Refined Triangular Plate Bending Finite Elements, Internat. J. Numer. Methods Engrg., vol. 1, 1969, p. 101-122. [Google Scholar]
  4. M. BERNADOU 1. Méthodes conformes d'éléments finis avec intégration numérique pour des problèmes de coques, Rapport de Recherche I.R.I.A.-Laboria (à paraître). [Zbl: 0361.65093] [Google Scholar]
  5. H. CARTAN 1. Calcul différentiel, Paris, Hermann, 1967. [MR: 223194] [Zbl: 0156.36102] [Google Scholar]
  6. P. G. CIARLET 1. Numerical Analysis of the Finite Element Method, Presses de l'Université de Montréal, 1976; [MR: 495010] [Zbl: 0363.65083] [Google Scholar]
  7. P. G. CIARLET 2. The Finite Element Method for Elliptic Problems, North-Holland, 1977; [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  8. P. G. CIARLET 3. Interpolation Error Estimates for the Reduced Hsieh-Clough-Tocher Triangle, Journées Éléments finis de Rennes, mai 1977. [MR: 482249] [Zbl: 0378.65010] [Google Scholar]
  9. P. G. CIARLET et P. A. RAVIART 1. The Combined Effect of Curved Boundaries and Numerical Integration in Isoparametric Finite Element Methods, In The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. AZIZ, éd., Academic Press, New York, 1972, p. 409-474. [MR: 421108] [Zbl: 0262.65070] [Google Scholar]
  10. P. G. CIARLET et P. A. RAVIART 2. L'effet de l'intégration numérique dans les méthodes d'éléments finis (à paraître). [Google Scholar]
  11. J. N. LYNESS et D. JESPERSEN 1. Moderate degree symmetric quadrature rules for the triangle. J. Inst. Maths. Applics., 15, 1975, p. 19-32. [MR: 378368] [Zbl: 0297.65018] [Google Scholar]
  12. L. MANSFIELD 1. Approximation of the Boundary in the Finite Element Solution of Fourth Order Problems (to appear). [Zbl: 0391.65047] [Google Scholar]
  13. J. NE_AS 1. Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967. [Google Scholar]
  14. A. ZENISEK 1. A General Theorem on Triangular Finite $C^(m)$-Elements, R.A.I.R.O., R. 2, vol. 8, 1974, p. 119-127. [EuDML: 193254] [Zbl: 0321.41003] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you