Free Access
Issue |
RAIRO. Anal. numér.
Volume 12, Number 4, 1978
|
|
---|---|---|
Page(s) | 349 - 375 | |
DOI | https://doi.org/10.1051/m2an/1978120403491 | |
Published online | 01 February 2017 |
- 1 J L P ARMAND et W J VITTE, Foundations of Aeroelastic Optimization and Some Applications to Continuons Systems, S U D A A R , n° 390, Stanford Umversity 1970 [Google Scholar]
- 2 J L P ARMAND, Applications of the Theory of Optimal Control of Distributed Parameter Systems to Structural Optimization, N A S A , C R 2044, juin 1972 [Google Scholar]
- 3 P BROUSSE, Les problèmes d'optimisation en mécanique des structures, Monogiaphie (à paraître) [Zbl: 0436.49014] [Google Scholar]
- 4 P G CIARLET, Discrete Maximum Principle for Finite Difference Operators, Acquationes Math vol 4 1970 p 338-352 [EuDML: 136095] [MR: 292317] [Zbl: 0198.14601] [Google Scholar]
- 5 P G CIARLET, Numencal Analysis of the Finite Element Method, Séminaire de Mathématiques Superieures, 1975 Les Presses de l'Université de Montréal 1976 [MR: 495010] [Zbl: 0363.65083] [Google Scholar]
- 6 P G CIARLET et P A RAVIART, Maximum Principle and Uniform Convergence for the Finite Element Method, Comp Methods m Appl Mech and Engin , vol 2, 1973 p 17-31 [MR: 375802] [Zbl: 0251.65069] [Google Scholar]
- 7 M FORTIN Cours d'Analyse convexeUniversité Pans-Sud, Publications Mathématiques d Orsay 78 3 [Google Scholar]
- 8 H HALKIN Calculus of Variations Classical and Modern, C I M E 1966 p 177-192 [Zbl: 0183.17501] [Google Scholar]
- 9 E J HAUG K C PAN et T D STREETER, A Computational Method for Optimal Structural Design I Piecewise Uniform Structures, Int J num Meth Eng , vol 51972, p 171-184, IIContinuons Problems, Int J num Meth Eng , vol 9, 1975, p 649-667 [MR: 416022] [Zbl: 0243.73046] [Google Scholar]
- 10 C JOURON, Analyse théorique et numérique de quelques problèmes d'optimisation intervenant en theorie des structures, These de Doctorat d'Etat, Université Paris-Sud 1976 [Google Scholar]
- 11 O. L. Mangasarian Nonlinear Programming McGraw-Hill 1969 [Google Scholar]
- 12 Fulbert Mignot Contrôle de fonctions propres C. R. Acad. sci Paris 280 série A 1975 p 333-335 [Google Scholar]
- 13. F MIGNOT, Inéquations variationnelles et contrôle, Thèse de Doctorat d'État, Université Paris-VI, 1975. [Google Scholar]
- 14. S. G MIKLIN, Vanatwnal Methods in Mathematicai Physics, Pergamon Press, 1964. [Google Scholar]
- 15. F. MURAT, Communication personnelle. [Google Scholar]
- 16. F MURAT, Contre exemple pour divers problèmes où le contrôle intervient dans les coefficients,Ann. Math. Pur. Appl., vol. 112, 1977, p. 49-68 [Zbl: 0349.49005] [Google Scholar]
- 17. W. PRAGER et J. E TAYLOR, Problems of Optimal Structural design, Appl. Mech.,série E, vol 35, 1968, p 102-107 [Zbl: 0155.52003] [Google Scholar]
- 18. R T. ROCKAFELLAR, The Multiplier Method ofHestenes and Powell Applied to Convex Programming, J of Opt. Th and Appl., vol. 12, 1973, p 555-562. [Zbl: 0254.90045] [Google Scholar]
- 19. R. T. ROCKAFELLAR, Augmented Lagrange Multiplier Functions and Duahty in nonConvex Programming, S.I.A M. J Control, vol. 12, 1974, p. 268-285. [Zbl: 0257.90046] [Google Scholar]
- 20. G. STAMPACCHIA, quations elliptiques du second ordre à coefficients discontinus, Séminaire de Mathématiques Supérieures 1965, Les Presses de l'Université de Montréal, 1966 [Zbl: 0151.15501] [Google Scholar]
- 21 F. STRANG et G Fix, n Analysis ofthe Finite Element Method, Prentice Hall, 1973. [Zbl: 0356.65096] [Google Scholar]
- 22. J E. TAYLOR, Minimum Mass bar for Axial Vibration at Specified Natural Frequency, A.I A.A. Journal, vol 5, 1965, p 1911-1913 [Google Scholar]
- 23. J. E. TAYLOR, Optimum Design of a Vibrating bar with Specified Minimum Cross Section, LA A. Journal, vol 6, 1968, p 1379-1381. [Google Scholar]
- 24. R. TEMAM, On the Theory and Numencal Analysis of the Navier-Stokes Equations, North-Holland-Elsevier, Amsterdam-New York, 1977 [MR: 769654] [Google Scholar]
- 25. M I. TURNER, Design of Minimum Mass Structures with Specified Natural Frequencies, A I A.A. Journal, vol. 5, 1967, p. 406-412 [Zbl: 0149.23202] [Google Scholar]
- 26. J. P. VAN DE WIELE, Résolution numérique d'un problème de contrôle optimal de valeurs propres et vecteurs propres, Thèse 3e cycle, Université Pans-VI, 1974. [Google Scholar]
- 27. R. VARGA, Matrix Itérative Analysis, Prentice Hall, 1962. [MR: 158502] [Zbl: 0133.08602] [Google Scholar]
- 28. T A. WEISSHAAR, An application of Control Theory Methods to the Optimization of Structures Having Dynamic or Aeroelastic Constrains, S.U.D A A R., n° 412, Stanford Umversity, 1970 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.