Free Access
Issue
RAIRO. Anal. numér.
Volume 12, Number 4, 1978
Page(s) 349 - 375
DOI https://doi.org/10.1051/m2an/1978120403491
Published online 01 February 2017
  1. 1 J L P ARMAND et W J VITTE, Foundations of Aeroelastic Optimization and Some Applications to Continuons Systems, S U D A A R , n° 390, Stanford Umversity 1970
  2. 2 J L P ARMAND, Applications of the Theory of Optimal Control of Distributed Parameter Systems to Structural Optimization, N A S A , C R 2044, juin 1972
  3. 3 P BROUSSE, Les problèmes d'optimisation en mécanique des structures, Monogiaphie (à paraître) [Zbl: 0436.49014]
  4. 4 P G CIARLET, Discrete Maximum Principle for Finite Difference Operators, Acquationes Math vol 4 1970 p 338-352 [EuDML: 136095] [MR: 292317] [Zbl: 0198.14601]
  5. 5 P G CIARLET, Numencal Analysis of the Finite Element Method, Séminaire de Mathématiques Superieures, 1975 Les Presses de l'Université de Montréal 1976 [MR: 495010] [Zbl: 0363.65083]
  6. 6 P G CIARLET et P A RAVIART, Maximum Principle and Uniform Convergence for the Finite Element Method, Comp Methods m Appl Mech and Engin , vol 2, 1973 p 17-31 [MR: 375802] [Zbl: 0251.65069]
  7. 7 M FORTIN Cours d'Analyse convexeUniversité Pans-Sud, Publications Mathématiques d Orsay 78 3
  8. 8 H HALKIN Calculus of Variations Classical and Modern, C I M E 1966 p 177-192 [Zbl: 0183.17501]
  9. 9 E J HAUG K C PAN et T D STREETER, A Computational Method for Optimal Structural Design I Piecewise Uniform Structures, Int J num Meth Eng , vol 51972, p 171-184, IIContinuons Problems, Int J num Meth Eng , vol 9, 1975, p 649-667 [MR: 416022] [Zbl: 0243.73046]
  10. 10 C JOURON, Analyse théorique et numérique de quelques problèmes d'optimisation intervenant en theorie des structures, These de Doctorat d'Etat, Université Paris-Sud 1976
  11. 11 O. L. Mangasarian Nonlinear Programming McGraw-Hill 1969
  12. 12 Fulbert Mignot Contrôle de fonctions propres C. R. Acad. sci Paris 280 série A 1975 p 333-335
  13. 13. F MIGNOT, Inéquations variationnelles et contrôle, Thèse de Doctorat d'État, Université Paris-VI, 1975.
  14. 14. S. G MIKLIN, Vanatwnal Methods in Mathematicai Physics, Pergamon Press, 1964.
  15. 15. F. MURAT, Communication personnelle.
  16. 16. F MURAT, Contre exemple pour divers problèmes où le contrôle intervient dans les coefficients,Ann. Math. Pur. Appl., vol. 112, 1977, p. 49-68 [Zbl: 0349.49005]
  17. 17. W. PRAGER et J. E TAYLOR, Problems of Optimal Structural design, Appl. Mech.,série E, vol 35, 1968, p 102-107 [Zbl: 0155.52003]
  18. 18. R T. ROCKAFELLAR, The Multiplier Method ofHestenes and Powell Applied to Convex Programming, J of Opt. Th and Appl., vol. 12, 1973, p 555-562. [Zbl: 0254.90045]
  19. 19. R. T. ROCKAFELLAR, Augmented Lagrange Multiplier Functions and Duahty in nonConvex Programming, S.I.A M. J Control, vol. 12, 1974, p. 268-285. [Zbl: 0257.90046]
  20. 20. G. STAMPACCHIA, quations elliptiques du second ordre à coefficients discontinus, Séminaire de Mathématiques Supérieures 1965, Les Presses de l'Université de Montréal, 1966 [Zbl: 0151.15501]
  21. 21 F. STRANG et G Fix, n Analysis ofthe Finite Element Method, Prentice Hall, 1973. [Zbl: 0356.65096]
  22. 22. J E. TAYLOR, Minimum Mass bar for Axial Vibration at Specified Natural Frequency, A.I A.A. Journal, vol 5, 1965, p 1911-1913
  23. 23. J. E. TAYLOR, Optimum Design of a Vibrating bar with Specified Minimum Cross Section, LA A. Journal, vol 6, 1968, p 1379-1381.
  24. 24. R. TEMAM, On the Theory and Numencal Analysis of the Navier-Stokes Equations, North-Holland-Elsevier, Amsterdam-New York, 1977 [MR: 769654]
  25. 25. M I. TURNER, Design of Minimum Mass Structures with Specified Natural Frequencies, A I A.A. Journal, vol. 5, 1967, p. 406-412 [Zbl: 0149.23202]
  26. 26. J. P. VAN DE WIELE, Résolution numérique d'un problème de contrôle optimal de valeurs propres et vecteurs propres, Thèse 3e cycle, Université Pans-VI, 1974.
  27. 27. R. VARGA, Matrix Itérative Analysis, Prentice Hall, 1962. [MR: 158502] [Zbl: 0133.08602]
  28. 28. T A. WEISSHAAR, An application of Control Theory Methods to the Optimization of Structures Having Dynamic or Aeroelastic Constrains, S.U.D A A R., n° 412, Stanford Umversity, 1970

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you