Free Access
Issue |
RAIRO. Anal. numér.
Volume 13, Number 1, 1979
|
|
---|---|---|
Page(s) | 3 - 20 | |
DOI | https://doi.org/10.1051/m2an/1979130100031 | |
Published online | 01 February 2017 |
- 1. D. APPRATO, Thèse 3e cycle, Pau, 1978. [Google Scholar]
- 2. D. APPRATO,R. ARCANGELI et J. L. GOUT, Sur les éléments finis rationnels de Wachspress, Numerische Mathematik, à paraître. [EuDML: 132608] [Zbl: 0431.65001] [Google Scholar]
- 3. R. ARCANGELI et J. L. GOUT, Sur l’evaluation de l’erreur d’interpolation de Lagrange dans un ouvert de $R^n$ , R.A.I.R.O. Analyse Numérique, vol. 10, 1976, p. 5-27. [EuDML: 193275] [Zbl: 0337.65008] [Google Scholar]
- 4. R. ARCANGELI,J. L. GOUT et R. ROYER, Étude de l'erreur d'interpolation rationnelle de Wachspress sur un polygone, Publications Mathématiques de Pau, 1976. [Google Scholar]
- 5. P. G. CIARLET, Numerical analysis of the finite element method, Université de Montréal, 1976. [MR: 495010] [Zbl: 0363.65083] [Google Scholar]
- 6. P. G. CIARLET, The finite element method for elliptic problems, North Holland Amsterdam, 1977. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
- 7. P. G. CIARLET et P. A. RAVIART, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, dans « The mathematical foundations of the finite element method with applications to partial differential equations », A. K. Aziz, éd., Academic Press, New York, 1972, p. 409-474. [MR: 421108] [Zbl: 0262.65070] [Google Scholar]
- 8. P. J. DAVIS et P. RABINOWITZ, Methods of numerical integration, Academic Press, New York, 1975. [MR: 448814] [Zbl: 0304.65016] [Google Scholar]
- 9. G. J. FIX, Effects of quadrature errors in finite element approximation of steadystate, eigenvalue and parabolic problems, dans « The mathematical foundations of the finite element method with applications to partial differential equations », A. K. Aziz, éd., Academic Press, New York, 1972, p. 525-556. [MR: 413546] [Zbl: 0282.65081] [Google Scholar]
- 10. V. I. KRYLOV, Approximate calculation of integrals, Macmillan, New York, 1962. [MR: 144464] [Zbl: 0111.31801] [Google Scholar]
- 11. R. MCLEOD, Hermite interpolation over curved finite elements, Journal of Approximation Theory, 19, n° 2, 1977, p. 101-117. [MR: 426365] [Zbl: 0366.65007] [Google Scholar]
- 12. P. A. RAVIART, Méthode des éléments finis, rédigé par J. M. Thomas, D.E.A. Analyse Numérique, Paris VI, 1971-1972. [Google Scholar]
- 13. R. SCOTT, Finite element techniques for curved boundaries, Ph. D. dissertation, M.I.T., 1973. [Google Scholar]
- 14. G. STRANG, Variational crimes in the finite element method, dans « The mathematical foundations of the finite element method with applications to partial differential equations, A. K. Aziz, éd., Academic Press, New York, 1972, p. 689-710. [MR: 413554] [Zbl: 0264.65068] [Google Scholar]
- 15. G. STRANG et G. J. FIX, An analysis of the finite element method, Prentice-Hall, Englewood Cliffs, 1973. [MR: 443377] [Zbl: 0356.65096] [Google Scholar]
- 16. E. L. WACHSPRESS, A rational finite element basis, Academic Press, 1975. [MR: 426460] [Zbl: 0322.65001] [Google Scholar]
- 17. O. C. ZIENKIEWICZ, La méthode des éléments finis, Ediscience, Paris, 1973. [Google Scholar]
- 18. M. ZLAMAL, Curved elements in the finite element method, S.I.A.M., J. Numer. Anal., 10, 1973, p. 229-240. [MR: 395263] [Zbl: 0285.65067] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.