Free Access
Issue
RAIRO. Anal. numér.
Volume 13, Number 1, 1979
Page(s) 21 - 30
DOI https://doi.org/10.1051/m2an/1979130100211
Published online 01 February 2017
  1. 1. C. LEBAUD, Contribution à Vétude de Valgorithme QR, Thèse à l'Université deRennes, 1971. [Google Scholar]
  2. 2. C. LEBAUD, Remarques sur la convergence de l'algorithme QR, Revue Française d'Informatique et de Recherche Opérationnelle, 1968. [Zbl: 0208.40105] [MR: 247756] [Google Scholar]
  3. 3. MOLER, G. W. STEWART, An algorithme for generalized Matrix eigenvalue problems, S.I.A.M., J. Numer. Anal, 10, 1973. [MR: 345399] [Zbl: 0253.65019] [Google Scholar]
  4. 4. PARLETT, Global convergence of the basic QR algorithm for hessenberg matrices, Math. Comp., 22, 1968. [MR: 247759] [Zbl: 0184.37602] [Google Scholar]
  5. 5. W. G. PARLETT, POOLE, A geometric theory for the QR, LU and power iteration, S.I.A.M., J. Numer. Anal., 7, 1972. [Zbl: 0253.65018] [Google Scholar]
  6. 6. PETERS, WILKINSON, $Ax=\lambda Bx$ and the generalized eigenproblem, S.I.A.M., J.Numer. Anal, 7, 1970. [Zbl: 0276.15016] [Google Scholar]
  7. 7. G. W. STEWART, On the sensitivity of the eigenvalue problem A$x$ = $\lambda Bx$ , S.I.A.M.,J. Numer. Anal., 9, 1972. [MR: 311682] [Zbl: 0252.65026] [Google Scholar]
  8. 8. J. H. WILKINSON, The algebraic Eigenvalue problem, Oxford University Press, 1965. [MR: 184422] [Zbl: 0258.65037] [Google Scholar]
  9. 9. J. H. WILKINSON, Some recent advances in numerical linear Algebra, dans « The state of the art in Numerical Analysis », 1977. [MR: 455326] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you