Free Access
Issue
RAIRO. Anal. numér.
Volume 13, Number 1, 1979
Page(s) 21 - 30
DOI https://doi.org/10.1051/m2an/1979130100211
Published online 01 February 2017
  1. 1. C. LEBAUD, Contribution à Vétude de Valgorithme QR, Thèse à l'Université deRennes, 1971.
  2. 2. C. LEBAUD, Remarques sur la convergence de l'algorithme QR, Revue Française d'Informatique et de Recherche Opérationnelle, 1968. [Zbl: 0208.40105] [MR: 247756]
  3. 3. MOLER, G. W. STEWART, An algorithme for generalized Matrix eigenvalue problems, S.I.A.M., J. Numer. Anal, 10, 1973. [MR: 345399] [Zbl: 0253.65019]
  4. 4. PARLETT, Global convergence of the basic QR algorithm for hessenberg matrices, Math. Comp., 22, 1968. [MR: 247759] [Zbl: 0184.37602]
  5. 5. W. G. PARLETT, POOLE, A geometric theory for the QR, LU and power iteration, S.I.A.M., J. Numer. Anal., 7, 1972. [Zbl: 0253.65018]
  6. 6. PETERS, WILKINSON, $Ax=\lambda Bx$ and the generalized eigenproblem, S.I.A.M., J.Numer. Anal, 7, 1970. [Zbl: 0276.15016]
  7. 7. G. W. STEWART, On the sensitivity of the eigenvalue problem A$x$ = $\lambda Bx$ , S.I.A.M.,J. Numer. Anal., 9, 1972. [MR: 311682] [Zbl: 0252.65026]
  8. 8. J. H. WILKINSON, The algebraic Eigenvalue problem, Oxford University Press, 1965. [MR: 184422] [Zbl: 0258.65037]
  9. 9. J. H. WILKINSON, Some recent advances in numerical linear Algebra, dans « The state of the art in Numerical Analysis », 1977. [MR: 455326]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you