Free Access
RAIRO. Anal. numér.
Volume 13, Number 3, 1979
Page(s) 201 - 226
Published online 01 February 2017
  1. 1. G. A. BAKER and J. H. BRAMBLE, Semidiscrete and Single Step Fully Discrete Approximations for Second Order Hyperbolic Equations, Rapport Interne No. 22, Centre de Mathématiques appliquées, École polytechnique, Palaiseau, 1977. [Zbl: 0405.65057]
  2. 2. G. A. BAKER and V. A. DOUGALIS, On the L x -Convergence of Approximations for Hyperbolic Equations (to appear in Math. Comp.). [MR: 559193] [Zbl: 0454.65078]
  3. 3. G. A. BAKER,V. A. DOUGALIS and S. M. SERBIN, An Approximation Theorem for Second-Order Evolution Equations (to appear in Numer. Math.). [EuDML: 186281] [MR: 585242] [Zbl: 0445.65075]
  4. 4. J. H. BRAMBLE, A. H. SCHATZ, V. THOMÉE and L. B. WAHLBIN, Some Convergence Estimates for Semidiscrete Galerkin Type Approximations for Parabolic Equations, S.I.A.M., J. Numer. Anal., Vol. 14, 1977, pp. 218-241. [MR: 448926] [Zbl: 0364.65084]
  5. 5. M. CROUZEIX, Sur l'approximation des équations différentielles opérationnelles linéaires par des méthodes de Runge-Kutta, Thèse, Université Paris-VI, 1975.
  6. 6. V. A. DOUGALIS, Multistep Galerkin Methods for Hyperbolic Equations, Math.Comp., Vol. 33, 1979, pp, 563-584. [MR: 521277] [Zbl: 0417.65057]
  7. 7. T. DUPONT, L2-Estimates for Galerkin Methods for Second-Order Hyperbolic Equations, S.I.A.M., J. Numer. Anal., Vol. 1973, pp.880-889. [MR: 349045] [Zbl: 0239.65087]
  8. 8. E. GEKELER, Linear Multistep Methods and Galerkin Procedures for Initial-Boundary Value Problems, S.I.A.M., J. Numer. Anal., Vol. 13, 1976, pp.536-548. [MR: 431749] [Zbl: 0335.65042]
  9. 9. E. GEKELER, Galerkin-Runge-Kutta Methods and Hyperbolic Initial Boundary Value Problems, Computing, Vol. 18, 1977, pp.79-88. [MR: 438739] [Zbl: 0348.65087]
  10. 10. S. M. SERBIN, Rational Approximations of Trigonométric Matrices with Applications to Second-Order Systems of Differential Equations, Appl. Math, and Computation, Vol. 5, 1979, pp. 75-92. [MR: 516304] [Zbl: 0408.65047]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you