Free Access
RAIRO. Anal. numér.
Volume 13, Number 3, 1979
Page(s) 227 - 255
Published online 01 February 2017
  1. 1. S. GMON, Elliptic Boundary Values Problems, D. van Nostrand, 1965. [Google Scholar]
  2. 2. A. BERGER,R. SCOTT and G. STRANG, Approximate Boundary Conditions in the Finite Element Method, Symposia Mathematica, X, Academic Press, 1972, pp. 295-313. [MR: 403258] [Zbl: 0266.73050] [Google Scholar]
  3. 3. S. BERGMAN and M. SCHIFFER, Kernel Functions and Elliptic Differential Equations in Mathematical Physics, Academic Press, 1953. [MR: 54140] [Zbl: 0053.39003] [Google Scholar]
  4. 4. J. J. BLAIR, Higher Order Approximations to the Boundary Conditions for the Finite element Method, Math. Comp., Vol. 30, 1976, pp. 250-262. [MR: 398123] [Zbl: 0342.65068] [Google Scholar]
  5. 5. J. H. BRAMBLE and S. R. HILBERT, Estimation of Linear Functionals on Sobolev Spaces with Applications to Fourier Transforms and Spline Interpolation, S.I.A.M. J. Numer. Anal., Vol. 7, 1970, pp. 112-124. [MR: 263214] [Zbl: 0201.07803] [Google Scholar]
  6. 6. J. H. BRAMBLE and A. H. SCHATZ, Rayleigh-Ritz-Galerkin Methods for Dirichlet's Problem Using Subspaces Without Boundary Conditions, Comm. Pure App. Math.,Vol. 23, 1970, pp. 653-674. [MR: 267788] [Zbl: 0204.11102] [Google Scholar]
  7. 7. J. H. BRAMBLE and A. H. SCHATZ, Least Squares Methods for 2m-th Order Elliptic Boundary-Value Problems, Math. Comp., Vol. 25, 1971, pp. 1-32. [MR: 295591] [Zbl: 0216.49202] [Google Scholar]
  8. 8. P. G. CIARLET, Sur l'élément de Clough et Tocher, R.A.I.R.O., Analyse numérique, Vol. 2, 1974, pp. 19-27. [EuDML: 193256] [MR: 381349] [Zbl: 0306.65070] [Google Scholar]
  9. 9. P. G. CIARLET, Numerical Analysis of the Finite Element Method, Séminaire de Mathématiques supérieures, Université de Montréal, 1975. [MR: 495010] [Zbl: 0363.65083] [Google Scholar]
  10. 10. P. G. CIARLET and P.-A. RAVIART, General Lagrange and Hermite Interpolation in Rn with Applications to Finite Element Methods, Arch. Rational Mech. Anal., Vol. 46, 1972, pp. 177-199. [MR: 336957] [Zbl: 0243.41004] [Google Scholar]
  11. 11. J. F. CIAVALDINI and J. C. NEDELEC, Sur l'élement de Fraeijs de Veubeke et Sander, R.A.I.R.O., Analyse numérique, Vol. 2, 1974, pp. 29-46. [EuDML: 193257] [MR: 381350] [Zbl: 0304.65077] [Google Scholar]
  12. 12. R. W. CLOUGH and J. L. TOCHER, Finite Element Stiffness Matrices and Analysis of Plates in Bending, Proceedings of Conference on Matrix Methods in Structural Mechanics, Wright-Patterson AFB, 1965. [Google Scholar]
  13. 13. J. Jr. DOUGLAS, H1-Galerkin Methods for a Nonlinear Dirichlet Problem, Mathematical Aspects of Finite Element Methods, Rome, 1975, Lecture Notes in Mathematics, n° 606, Springer-Verlag, 1977, pp. 64-86. [MR: 471369] [Zbl: 0371.65023] [Google Scholar]
  14. 14. J. Jr. DOUGLAS and T. DUPONT, Collocation Methods for Parabolic Equations in a Single Space Variable, Lecture Notes in Mathematics, n° 385, Springler-Verlag, 1974. [MR: 483559] [Zbl: 0279.65097] [Google Scholar]
  15. 15. J. Jr. DOUGLAS and T. DUPONT, H~1-Galerkin Methods for Problems Involving Several space Variables, Topics in Numerical Analysis, III, John J. H. MILLER, éd., Academic Press, 1977, pp. 125-141. [MR: 657982] [Zbl: 0436.65084] [Google Scholar]
  16. 16. J. Jr. DOUGLAS,T. DUPONT and M. F. WHEELER, H1-Galerkin Methods for the Laplace and Heat Equations, Mathematical Aspects of Finite Elements in Partial Differential Equations, C. DEBOOR, éd., Academic Press, 1974, pp. 383-416. [MR: 349031] [Zbl: 0347.65047] [Google Scholar]
  17. 17. T. DUPONT and R. SCOTT, Polynomial Approximation of Functions in Sobolev Spaces, submitted Math. Comp. [MR: 559195] [Zbl: 0423.65009] [Google Scholar]
  18. 18. B. FRAEIJS DEVEUBEKE, Bending and Stretching of Plates, Proceedings of Conference on Matrix Methods in Structural Mechanics, Wright-Patterson AFB, 1965. [Google Scholar]
  19. 19. P. GRISVARD, Behavior of the Solutions of an Elliptic Boundary Value Problem in Polygonal or Polyhedral Domain, Numerical Solution of Partial Differential Equations, III (Synspade, 1975), Bert HUBBARD, éd., Academic Press, 1976,pp.207-274. [MR: 466912] [Zbl: 0361.35022] [Google Scholar]
  20. 20. P. JAMET, Estimation de Verreur d'interpolation dans un domaine variable et application aux éléments finis quadrilatéraux dégénérés, in Méthodes numériques enmathématiques appliquées (Séminaire de Mathématiques supérieures, été 1975),Presses de l'Université de Montréal, Vol. 60, 1977. [Zbl: 0374.65007] [Google Scholar]
  21. 21. I. N. KATZ,A. G. PEANO and B. A. SZABO, Nodal Variables for Arbitrary Order Conforming Finite Eléments, U. S. Dept. of Transportation Tech. Rep. DOT-OS-30108-5, Washington Univ., June, 1975. [Google Scholar]
  22. 22. J. L. LIONS and E. MAGENES, Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris, 1968. [MR: 247243] [Zbl: 0165.10801] [Google Scholar]
  23. 23. J. MORGAN and R. SCOTT, A nodal basis for $C^1$ piecewise polynomials of degree $n\ge 5$ , Math. Comp., Vol. 29, 1975, pp. 736-740. [MR: 375740] [Zbl: 0307.65074] [Google Scholar]
  24. 24. J. NITSCHE, On Dirichlet Problems Usina Subspaces with Nearly Zero Boundary Conditions, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.K. Aziz, éd., Academic Press, 1972, pp. 603-628. [MR: 426456] [Zbl: 0271.65059] [Google Scholar]
  25. 25. A.G. PEANO, Hierarchies of Conforming Finite Elements for Plane Elasticity and Plate Bending, Comp. and Maths, with Appls., VoL 2, 1976t pp. 211-224. [Zbl: 0369.73071] [Google Scholar]
  26. 26. P. PERCELL, On Cubic and Quartic Clough-Tocher Finite Eléments, S.I.A.M.J. Numer. Anal., Vol. 13, 1976, pp. 100-103. [MR: 408198] [Zbl: 0319.65064] [Google Scholar]
  27. 27. G. SANDER, Bornes supérieures et inférieures dans l'analyse matricielle des plaques en flexion-torsion, Bull. Soc. Royale des Se. de Liège, Vol. 33, 1964, pp, 456-494. [MR: 170526] [Google Scholar]
  28. 28. A. H. SCHATZ, An Observation Concerning Ritz-Galerkin Methods with Indefinite Bilinear Forms, Math. Comp., Vol. 28, 1974, pp. 959-962. [MR: 373326] [Zbl: 0321.65059] [Google Scholar]
  29. 29. R. SCOTT, C1 Continuity via Constraints for 4th Order Problems, Mathematical Aspects of Finite Eléments in Partial Differential Equations, C. DEBOOR, éd., Academic Press; 1974, pp. 171-193. [MR: 658318] [Zbl: 0337.65059] [Google Scholar]
  30. 30. R. SCOTT, Interpolatetl Boundarv Conditions in the Finite Element Method, S.LA.M.J. Numer. Anal., Vol. 12, 1975, pp. 404-427. [MR: 386304] [Zbl: 0357.65082] [Google Scholar]
  31. 31. G. STRANG, Piecewise Polynomials and the Finite Element Method, Bull. A.M.S.,VoL 79, 1973, pp. 1128-1137. [MR: 327060] [Zbl: 0285.41009] [Google Scholar]
  32. 32. B.A. SZABO et al., Advanced Design Technology for Rail Transportation Vehicles, .S.Dept. of Transportation Tech. Rep. DOT-OS-30108-2, Washington Univ., June, 1974. [Google Scholar]
  33. 33. V. THOMÉE and L. WAHLBIN, On Galerkin Methods in Semi-Linear Parabolie Problems, S.I.A.M. J. Num. Anal., VoL 12, 1975, pp. 378-389. [MR: 395269] [Zbl: 0307.35007] [Google Scholar]
  34. 34. O. C. ZIENKIEWICZ, TheFinite Element Method in Engineering Science, McGraw-Hill, 1971. [MR: 315970] [Zbl: 0237.73071] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you