Free Access
Issue
RAIRO. Anal. numér.
Volume 14, Number 4, 1980
Page(s) 335 - 346
DOI https://doi.org/10.1051/m2an/1980140403351
Published online 31 January 2017
  1. 1. C. BAIOCCHI, Estimations d’erreur dans $L^\infty $ pour les inéquations à obstacle, Lecture Notes Math. Gem., n° 606, 1977, p. 27-34. [MR: 488847] [Zbl: 0374.65053] [Google Scholar]
  2. 2. C. BAIOCCHI et A. CAPELO, Disequazioni variazionali e quasi variazionali. Applicazioni a problemi di frontiera libera, Bologne. [Google Scholar]
  3. 3. C. BAIOCCHI et G. A. Pozzi, Error Estimates and Free Boundary Convergence for a Finite Difference Discretization of a Parabolic Variational Inequality, R.A.I.R.O.,vol. 11, n°4, 1977, p. 315-340. [EuDML: 193305] [MR: 464607] [Zbl: 0371.65020] [Google Scholar]
  4. 4. A. BENSOUSSAN,M. GOURSAT et J.-L. LIONS, C.R. Acad. Sc., Paris, t. 276, série A, 1973, p. 1279. [MR: 317143] [Zbl: 0264.49004] [Google Scholar]
  5. 5. A. BENSOUSSAN et J.-L. LIONS, C.R. Acad. Sc, Paris, t. 276, série A, 1973, p. 1189 et t.278, série A, 1974,p. 675. [Google Scholar]
  6. 6. A. BENSOUSSAN et J.-L. LIONS, Application des inéquations variationnelles en contrôle stochastique, Dunod, Paris. [MR: 513618] [Zbl: 0411.49002] [Google Scholar]
  7. 7. CAFFARELLI et FRIEDMAN, Regularity of the Solution of the Quasi Variational Inequality or the Impulse Control. Part I, Comm. of PDE, t. 3, 1978, p. 745 à 753. [Zbl: 0385.35010] [Google Scholar]
  8. Part II, Comm. of PDE, t. 4, 1979,p. 279-291. [MR: 522713] [Google Scholar]
  9. 8. P. G. CIARLET, Discrete Maximum Principle for Finite-Difference Operators Aequationes Mathematicae, t, 4, 1970, .p. 338-352. [EuDML: 136095] [MR: 292317] [Zbl: 0198.14601] [Google Scholar]
  10. 9. P G CIARLET et P A RAVIART, Maximum principle and uniform convergence for the finite element method Comput methods in appl mech and eng vol 2 1973 p 1-20 [MR: 375802] [Zbl: 0251.65069] [Google Scholar]
  11. 10. P CORTEY DUMONT, These de 3 cycle, Besançon 1978 [Google Scholar]
  12. 11. P CORTEY-DUMONT C R Acad Sc, Paris, t 288, serie A, 1979, p 14 [MR: 524770] [Google Scholar]
  13. 12. P CORTEY-DUMONTRapports de recherche E R A , n° 070654 [Google Scholar]
  14. 13. R FALK, Error Estimates for the Approximation of a Class of Variational Inequalities, Mathematics of computation, vol 28, n° 128, 1974, p 963-971 [MR: 391502] [Zbl: 0297.65061] [Google Scholar]
  15. 14. R GLOWINSKI, J -L LIONSet R TREMOLIERE, Analyse numérique des inéquations variationnelles, Dunod, Paris [Google Scholar]
  16. 15. M GOURSAT et J P QUADRAT, Rapport Laboria, n° 186 [Google Scholar]
  17. 16.B HANNOUZET et J L JOLY, Méthode d'ordre dans l'interprétation de certaines inéquations variationnelles et applications, Université de Bordeaux-I [Zbl: 0425.49009] [Google Scholar]
  18. 17. B HANNOUZET et J L JOLY, C R Acad Sc , Paris, t 286, série A, 1978, p 735 [MR: 496035] [Zbl: 0373.49012] [Google Scholar]
  19. 18. T LAETSCH J funct Anal, n° 18, 1975, p 286-287 [MR: 380554] [Zbl: 0327.49003] [Google Scholar]
  20. 19. J L MENALDI C R Acad Sc, Paris, t 284, série A, 1977, p 1499 [Zbl: 0363.49002] [Google Scholar]
  21. 20. J C MIELLOU, Cours de D E A, 1974 [Google Scholar]
  22. 21. J C MIELLOU, Mixte Relaxation Algorithm Applied to Quasi-Variational Inequations, Proceedings, 7 th I F I P conference, vol 2, 1975, p 192, Springer-Verlag [Zbl: 0345.49014] [Google Scholar]
  23. 22. J NITSCHE, $L^\infty $ Convergence of Finite Element Approximations, Lectures Notes Math Gem , n° 606, 1977, p 1-15 [EuDML: 273799] [MR: 488848] [Zbl: 0362.65088] [Google Scholar]
  24. 23. R SCOTT, Optimal $L^\infty $ Estimates for the Finite Element Method on Irregular, Meshes math of comp , vol 30, n° 136, 1976, p 681-697 [MR: 436617] [Zbl: 0349.65060] [Google Scholar]
  25. 24. L TARTAR, C R Acad Sc, Paris, t 278, serie A, 1974, p 1193 [MR: 344964] [Zbl: 0334.49003] [Google Scholar]
  26. 25. M BIROLI, Estimates in G-Convergence for Variational and Quasi-Variational Inequalities with Bounded Coefficients, Proceeding du Séminaire intensif sur les problèmes à frontière libre, Pavie, octobre 1979 (à paraître) [Google Scholar]
  27. 26. P CORTEY-DUMONT, CR Acad Sc, Paris, t 290, serie A, 1980, p 255 [MR: 564323] [Zbl: 0426.65066] [Google Scholar]
  28. 27. P CORTEY-DUMONT, On the Approximation of a Class of Quasi-Variational Inequalities Related to the Impulse Control, Proceeding du Séminaire intensif sur les problèmes à frontière libre, Pavie, octobre 1979 (à paraître) [Zbl: 0479.65041] [Google Scholar]
  29. 28. J FREHSE et U MOSCO, CR Acad Sc, Paris, t 288, serie A, 1979, p 627 [MR: 531243] [Google Scholar]
  30. 29. E LOINGER Calcolo (à paraître) [Google Scholar]
  31. 30. F MIGNOT et J P PUEL, C R Acad Sc, Paris, t 280, serie A, 1975, p 259 [MR: 390866] [Google Scholar]
  32. 31. U MOSCO, Convergence of Convex Sets and of Solution of Variational Inequalities,Adv Math vol 3 1969 p 510585 [MR: 298508] [Zbl: 0192.49101] [Google Scholar]
  33. 32. U MOSCU, Non Linear Quasi-Variational Inequalities and Stochastic Impulse Control theory, Proc conference equadiff IV, Prague 1977, Springer Lecture notes (à paraître) [EuDML: 220249] [Zbl: 0428.49004] [Google Scholar]
  34. 33. F BREZZI,W W HAGER et P A RAVIART, Error Estimates for the Finite Element Solution of Variational Inequalities Num Math , vol 28, 1977, p 431 [EuDML: 132496] [MR: 448949] [Zbl: 0369.65030] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you