Free Access
Issue
RAIRO. Anal. numér.
Volume 14, Number 4, 1980
Page(s) 347 - 368
DOI https://doi.org/10.1051/m2an/1980140403471
Published online 31 January 2017
  1. 1. I. BABUSKA,M. PRÁGER and E. VITÁSEK, Numerical Processes in Differential Equations, S.N.T.L., Prague, 1 1966. [MR: 223101] [Zbl: 0156.16003] [Google Scholar]
  2. 2. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North Holland Publ.Comp., Amsterdam, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  3. 3. K. GRÓGER, Initial Value Problems for Elastoplastic and Elasto-Viscoplastic Systems. Nonlinear Analysis, Proc. Spring School, Teubner, Leipzig, 1979, pp. 95-127. [EuDML: 220893] [MR: 578911] [Zbl: 0442.73037] [Google Scholar]
  4. 4. B. HALPHEN and NGUYEN QUOC SON, Sur les matériaux Standard généralisés, J.Mécan., Vol. 14, 1975, pp. 39-63. [MR: 416177] [Zbl: 0308.73017] [Google Scholar]
  5. 5. R. HILL, Mathematical Theory of Plasticity, Oxford, 1950. [MR: 37721] [Zbl: 0041.10802] [Google Scholar]
  6. 6. I. LAVÁCEK and J. NECAS, Mathematical Theory of Elastic and Elasto-Plastic Bodies, Elsevier, Amsterdam, 1980. [Zbl: 0448.73009] [Google Scholar]
  7. 7. I. HLAVÁCEK, Convergence of an Equilibrium Finite Element Model for Plane Elastostatics, Apl. Mat., Vol. 24, 1979, pp. 427-457. [EuDML: 15121] [MR: 547046] [Zbl: 0441.73101] [Google Scholar]
  8. 8. C. JOHNSON, On Plasticity with Hardening, J. Math. Anal. Appl., Vol. 62, 1978, pp. 325-336. [MR: 489198] [Zbl: 0373.73049] [Google Scholar]
  9. 9. C. JOHNSON, A Mixed Finite Element Method for Plasticity Problems with Hardening, S.I.A.M. J. Numer. Anal., Vol. 14, 1977, pp. 575-583. [MR: 489265] [Zbl: 0374.73039] [Google Scholar]
  10. 10. C. JOHNSON, On Finite Element Methods for Plasticity Problems, Numer. Math.,Vol. 26, 1976, pp. 79-84. [EuDML: 132402] [MR: 436626] [Zbl: 0355.73035] [Google Scholar]
  11. 11. C. JOHNSON and B. MERCIER, Some Equilibrium Finite Element Methods for Two-Dimensional Elasticity Problems, Numer. Math., Vol. 30, 1978, pp. 103-116. [EuDML: 132541] [MR: 483904] [Zbl: 0427.73072] [Google Scholar]
  12. 12. M. RRÎZEK, An Equilibrium Finite Element Method in Three-Dimensional Elasticity, Apl. Mat. (to appear). [EuDML: 15223] [MR: 640139] [Zbl: 0488.73072] [Google Scholar]
  13. 13. B. MERCIER, A personal communication. [Google Scholar]
  14. 14. NGUYEN QUOC SON, Matériaux élastoplastiques écrouissable, Arch. Mech. Stos., Vol. 25, 1973, pp. 695-702. [MR: 366164] [Zbl: 0332.73039] [Google Scholar]
  15. 15. V.B. WATWOOD and B.J. HARTZ, An Equilibrium Stress Field Model for Finite Element Solution of Two-Dimensional Elastostatic Problems, Inter. J. Solids Structures, Vol. 4, 1968, pp. 857-873. [Zbl: 0164.26201] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you