Free Access
Issue
RAIRO. Anal. numér.
Volume 15, Number 3, 1981
Page(s) 231 - 235
DOI https://doi.org/10.1051/m2an/1981150302311
Published online 31 January 2017
  1. I. BABUSKA and A. K. AZIZ, Survey lectures on the mathematical foundations of the finite element method. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Part I. (Ed. A. K. Aziz) Academic Press, New York, London, 1972. [MR: 421106] [Zbl: 0268.65052] [Google Scholar]
  2. J. H. BRAMBLE and A. H. SCHATZ, Least squares methods for 2 m th order elliptic boundary-value problems, Math. Comp., 25 (1971), 1-32. [MR: 295591] [Zbl: 0216.49202] [Google Scholar]
  3. J. H. BRAMBLE,A. H. SCHATZ,V. THOMÉE and L. H. WAHLBIN, Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations, SIAM J. Numer. Analysis, 14 (1977), 218-241. [MR: 448926] [Zbl: 0364.65084] [Google Scholar]
  4. J. H. BRAMBLE and R. SCOTT, Simultaneous approximation in scales of Banach spaces, Math. Comp. 32 (1978), 947-954. [MR: 501990] [Zbl: 0404.41005] [Google Scholar]
  5. S. G. KREIN, Linear Differential Equations in Banach space, American Math. Soc., Providence, 1971. [MR: 342804] [Zbl: 0229.34050] [Google Scholar]
  6. J. L. LIONS and E. MAGENES, Nonhomogeneous Boundary Value Problems and Applications, Vol. I, Springer Verlag, Berlin and New York, 1972. [Zbl: 0223.35039] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you