Free Access
Issue
RAIRO. Anal. numér.
Volume 15, Number 3, 1981
Page(s) 237 - 248
DOI https://doi.org/10.1051/m2an/1981150302371
Published online 31 January 2017
  1. P. G. CIARLET, The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications. North-Holland Publ. Comp., Amsterdam-New York- Oxford (1978). [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  2. G. DUVAUT and J. L. LIONS, Les Inéquations en Mécanique et en Physique, Dunod, Paris (1972). [MR: 464857] [Zbl: 0298.73001] [Google Scholar]
  3. G. FICHERA, Linear Elliptic Differential Systems and Eigenvalue Problems. Springer-Verlag, Berlin-Heidelberg-New York (1965). [MR: 209639] [Zbl: 0138.36104] [Google Scholar]
  4. G. FICHERA, Existence theorems in elasticity-boundary value problems of elasticity with unilateral constraints. Encyclopedia of Physics (S. Flügge, Chief Editor), Vol. VIa/2 : Mechanics of Solids II (C. Truesdell, Editor), pp. 347-424, Springer-Verlag, Berlin (1972). [Google Scholar]
  5. K. O. FRIEDRICHS, On the boundary value problems of the theory of elasticity and Korn's inequality. Ann. of Math., 48, (1947), 441-471. [MR: 22750] [Zbl: 0029.17002] [Google Scholar]
  6. A. KORN, Solution générale du problème d'équilibre dans la théorie de l'élasticité dans le cas où les efforts sont donnés à la surface. . Ann. Université Toulouse (1908), 165-269. [EuDML: 72804] [Zbl: 39.0853.03] [JFM: 39.0853.03] [Google Scholar]
  7. A. KORN, Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Bull. Intern. Cracov. Akad. umiejet (Classe Sci. Math. nat.) (1909) 706-724. [Zbl: 40.0884.02] [JFM: 40.0884.02] [Google Scholar]
  8. L. E. PAYNE and H. F. WEINBERGER, On korn's inequality. Arch. Rational Mech. Anal., 8, (1961), 89-98. [MR: 158312] [Zbl: 0107.31105] [Google Scholar]
  9. E. M. STEIN, Singular integrals and differentiability properties of functions. Princeton Univ. Press, Princeton, N. J. (1970). [MR: 290095] [Zbl: 0207.13501] [Google Scholar]
  10. W. VELTE, Direkte Methoden der Variationsrechnung. . B. G. Teubner, Stuttgart (1976). [MR: 500387] [Zbl: 0333.49035] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you