Free Access
RAIRO. Anal. numér.
Volume 16, Number 4, 1982
Page(s) 375 - 404
Published online 31 January 2017
  1. R A ADAMS, Sobolev spaces, Academic Press, New York (1975) [MR: 450957] [Zbl: 0314.46030] [Google Scholar]
  2. J BABUSKA, A K AZIZ, " Survey lectures on the mathematical foundations of the finite element method ", in The Mathematical Foundations of The Finite Element Method with Applications to Partial Differential Equations, Ed Aziz, Academic Press, NewYork (1972), 3-343 [Zbl: 0268.65052] [Google Scholar]
  3. J BERGH, J LOFSTROM, Interpolation Spaces An Introduction, Springer Verlag, Berlin (1976) [MR: 482275] [Zbl: 0344.46071] [Google Scholar]
  4. F BREZZI, J RAPPAZ, P A RAVIART, Finite dimensional approximation of nonlinear problems Part I branches of nonsingular solutions Num Math , 36 (1980), 1-25 [EuDML: 132686] [MR: 595803] [Zbl: 0488.65021] [Google Scholar]
  5. C CANUTO, A QUARTERONI, Spectral and pseudo-spectral methods for parabolic problems with non periodic boundary conditions, Calcolo, 18 (1981), pp 197-217 [MR: 647825] [Zbl: 0485.65078] [Google Scholar]
  6. C CANUTO, A QUARTERONI Approximation results for orthogonal polynomials in Sobolev spaces, Math Comput, 38 (1982), pp 67 86 [MR: 637287] [Zbl: 0567.41008] [Google Scholar]
  7. A DAVIS, P RABINOWITZ Methods of Numerical Integration, Academic Press,New York (1975) [MR: 448814] [Zbl: 0304.65016] [Google Scholar]
  8. D GOTTLIEB, S A ORSZAG, Numerical Analysis of Spectral Methods Theory and Applications, Regional Conference Series in applied mathematics, SIAM, Philadelphia (1977) [MR: 520152] [Zbl: 0412.65058] [Google Scholar]
  9. H O KREISS, J OLIGER, Stability of the Fourier method, SIAM J Num An ,16, 3 (1949), 421-433 [MR: 530479] [Zbl: 0419.65076] [Google Scholar]
  10. J L LIONS, E MAGENES, Non Homogeneous Boundary Value Problems and Applications, Springer Verlag, Berlin (1972) [Zbl: 0223.35039] [Google Scholar]
  11. Y MADAY, A QUARTERONI Legendre and Chebyshev spectral approximation of Burgers equation, Numer Math, 37 (1981), pp 321-332 [EuDML: 132733] [Zbl: 0452.41007] [Google Scholar]
  12. Y MADAY, A QUARTERONI, Spectral and pseudo-spectral approximations of Navier-Stokes equations, SIAM J Numer Anal, 19 (1982), pp 769-780 [Zbl: 0503.76035] [Google Scholar]
  13. R E NICKELL, D K GARTLING, G STRANG, Spectral decomposition in advection-diffusion analysis by finite element methods, Comp Meths Appl Mech Eng 17/18 (1979), 561-580 [Zbl: 0403.76072] [Google Scholar]
  14. G SZEGO, Orthogonal Polynomials, AMS Colloquium publications, vol 23,AMS, New York (1939) [Zbl: 0023.21505] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you