Free Access
Issue
RAIRO. Anal. numér.
Volume 17, Number 1, 1983
Page(s) 5 - 16
DOI https://doi.org/10.1051/m2an/1983170100051
Published online 31 January 2017
  1. C. BARDOS, Existence et Unicité de la solution de l'équation d'Euler en dimension deux. J. Math. Anal. and Appl. 40 (1972) 769-790. [MR: 333488] [Zbl: 0249.35070]
  2. T. KATO, On the classical solution of the two dimensional non stationary Euler Equation. Arch. Rat. Mech. Anal. 25 (1967) 302-324. [MR: 211057] [Zbl: 0166.45302]
  3. KUO PEN YU, A class of difference scheme for two dimensional vorticity equation of viscous fluid. Acta mathematica Sinica (1974) 242-258. [MR: 458929]
  4. KUO PEN YU, Recorrected up wind scheme for in compressible viscous fluid problems. Acta Mathematica Sinica (1976) 30-38. [Zbl: 0358.76022]
  5. KUO PEN YU, Difference Methods in Numerical weather prediction scientia atmospherica Sinica (1978) 103-114.
  6. KUO PEN YU, Difference Methods of fluid dynamics (I). Numerical solution of two dimensional vorticity Equation Acta Mechanica Sinica (1979) 129-147.
  7. O. A. LADYZENSKAIA et N. URALTCEVA, The mathematical theory of viscous Incompressible flow. Gordon and Breach, New York (1969). [MR: 254401] [Zbl: 0184.52603]
  8. A. C. SCHAEFFER, Existence theorem for the flow of an incompressible fluid in two dimensions. Trans of the A.M.S. 42 (1937) 497-513. [MR: 1501931] [Zbl: 0018.12902]
  9. W. WOLIBNER, Un théorème sur l'existence du mouvement plan d'un fluide parfait homogène et impressible pendant un temps infiniment long. Math Z, 37 (1933) 727-738. [EuDML: 168482] [Zbl: 0008.06901]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you