Free Access
Issue
RAIRO. Anal. numér.
Volume 17, Number 1, 1983
Page(s) 17 - 33
DOI https://doi.org/10.1051/m2an/1983170100171
Published online 31 January 2017
  1. 1. D.N. ARNOLD, An interior penalty finite element method with discontinuous éléments, Thesis, University of Chicago, June 1979. [Google Scholar]
  2. 2. F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems a rising from Lagrangian multipliers, R.A.I.R.O., Anal Numér. 2(1974), pp. 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  3. 3. J. Jr. DOUGLAS and T. DUPONT, Interior penalty procedure for elliptic and parabolic Galerkin methods, Computing Methods in Applied Science, Lecture Notesin Physics 58, Springer-Verlag, 1976. [MR: 440955] [Google Scholar]
  4. 4. J. Jr. DOUGLAS,M. F. WHEELER,B. L. DARLOW and R. P. KENDALL, Self-adaptivefinite element simulation of miscible displacement in porous media, to appear in SIAM J. Sci. Stat. Computing. [Google Scholar]
  5. 5. J. Jr. DOUGLAS, Simulation of miscible displacement in porous media by a modifiedmethod of characteristics procedure, to appear in the proceedings of the 1981 Dundee Conference on Numerical Analysis. [Zbl: 0476.76100] [Google Scholar]
  6. 6. R. E. EWING and M. F. WHEELER, Galerkin methods for miscible displacementproblems in poróus media, SIAM J. Numer. Anal. 17 (1980), pp. 351-365. [MR: 581482] [Zbl: 0458.76092] [Google Scholar]
  7. 7. R. E. EWING and M. F. WHEELER, Galerkin methods for miscible displacement problems with point sources and sinks, unit mobility ratio case, to appear. [MR: 790511] [Zbl: 0551.76079] [Google Scholar]
  8. 8. D. W. PEACEMAN, Improved treatment of dispersion in numerical calculation of multidimensional miscible displacement, Soc. Pet. Eng. J. (1966), pp. 213-216. [Google Scholar]
  9. 9. D. W. PEACEMAN, Fundamentals of Numerical Reservoir Simulation, Elsevier Publishing Co., 1977. [Google Scholar]
  10. 10. P. A. RAVIART and J. M. THOMAS, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method,Lecture Notes in Mathematics 606, Springer-Verlag, 1977. [MR: 483555] [Zbl: 0362.65089] [Google Scholar]
  11. 11. T. F. RUSSELL, An incompletely iterated characteristic finite element method fora miscible displacement problem, Thesis, University of Chicago, June 1980. [Google Scholar]
  12. 12. P. H. SAMMON, Numerical approximations for a miscible displacement process inporous media, to appear. [Zbl: 0608.76084] [Google Scholar]
  13. 13. J. M. THOMAS, Sur l'analyse numérique des méthodes d'éléments finis hybrideset mixtes, Thèse, Université Pierre et Marie Curie, 1977. [Google Scholar]
  14. 14. M.F. WHEELER and B. L. DARLOW, Interior penalty Galerkin methods for miscible displacement problems in porous media, Computational Methods in NonlinearMechanics (J. T. Oden, éd.), North-Holland Publishing Co., 1980. [MR: 576923] [Zbl: 0444.76081] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you