Free Access
RAIRO. Anal. numér.
Volume 17, Number 1, 1983
Page(s) 17 - 33
Published online 31 January 2017
  1. 1. D.N. ARNOLD, An interior penalty finite element method with discontinuous éléments, Thesis, University of Chicago, June 1979.
  2. 2. F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems a rising from Lagrangian multipliers, R.A.I.R.O., Anal Numér. 2(1974), pp. 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047]
  3. 3. J. Jr. DOUGLAS and T. DUPONT, Interior penalty procedure for elliptic and parabolic Galerkin methods, Computing Methods in Applied Science, Lecture Notesin Physics 58, Springer-Verlag, 1976. [MR: 440955]
  4. 4. J. Jr. DOUGLAS,M. F. WHEELER,B. L. DARLOW and R. P. KENDALL, Self-adaptivefinite element simulation of miscible displacement in porous media, to appear in SIAM J. Sci. Stat. Computing.
  5. 5. J. Jr. DOUGLAS, Simulation of miscible displacement in porous media by a modifiedmethod of characteristics procedure, to appear in the proceedings of the 1981 Dundee Conference on Numerical Analysis. [Zbl: 0476.76100]
  6. 6. R. E. EWING and M. F. WHEELER, Galerkin methods for miscible displacementproblems in poróus media, SIAM J. Numer. Anal. 17 (1980), pp. 351-365. [MR: 581482] [Zbl: 0458.76092]
  7. 7. R. E. EWING and M. F. WHEELER, Galerkin methods for miscible displacement problems with point sources and sinks, unit mobility ratio case, to appear. [MR: 790511] [Zbl: 0551.76079]
  8. 8. D. W. PEACEMAN, Improved treatment of dispersion in numerical calculation of multidimensional miscible displacement, Soc. Pet. Eng. J. (1966), pp. 213-216.
  9. 9. D. W. PEACEMAN, Fundamentals of Numerical Reservoir Simulation, Elsevier Publishing Co., 1977.
  10. 10. P. A. RAVIART and J. M. THOMAS, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method,Lecture Notes in Mathematics 606, Springer-Verlag, 1977. [MR: 483555] [Zbl: 0362.65089]
  11. 11. T. F. RUSSELL, An incompletely iterated characteristic finite element method fora miscible displacement problem, Thesis, University of Chicago, June 1980.
  12. 12. P. H. SAMMON, Numerical approximations for a miscible displacement process inporous media, to appear. [Zbl: 0608.76084]
  13. 13. J. M. THOMAS, Sur l'analyse numérique des méthodes d'éléments finis hybrideset mixtes, Thèse, Université Pierre et Marie Curie, 1977.
  14. 14. M.F. WHEELER and B. L. DARLOW, Interior penalty Galerkin methods for miscible displacement problems in porous media, Computational Methods in NonlinearMechanics (J. T. Oden, éd.), North-Holland Publishing Co., 1980. [MR: 576923] [Zbl: 0444.76081]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you