Free Access
RAIRO. Anal. numér.
Volume 17, Number 4, 1983
Page(s) 337 - 384
Published online 31 January 2017
  1. O. AXELSSON, Solution of linear systems of equations : iterative methods, Sparse Matrix Techniques, V. A. Barker (editor), Lecture Notes in Mathematics 572, Springer-Verlag, 1971. [MR: 448834] [Zbl: 0354.65021] [Google Scholar]
  2. I. BABUŠKA and A. K. AZIZ, Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (Editor), Academic Press, New York, 1972. [MR: 421106] [Zbl: 0268.65052] [Google Scholar]
  3. I. BABUŠKA, The finite element method with Lagrangian multipliers, Numer. Math. 20 (1973), pp. 179-192. [EuDML: 132183] [MR: 359352] [Zbl: 0258.65108] [Google Scholar]
  4. J. H. BRAMBLE and J. E. OSBORN, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp. 27 (1973), pp. 525-549. [MR: 366029] [Zbl: 0305.65064] [Google Scholar]
  5. J. H. BRAMBLE and L. E. PAYNE, Some Uniqueness Theorems in the Theory of Elasticity, Arch. for Rat. Mech. and Anal., 9 (1962), pp. 319-328. [MR: 143374] [Zbl: 0103.40402] [Google Scholar]
  6. J. H. BRAMBLE and L. R. SCOTT, Simultaneous approximation in scales of Banach spaces, Math. Comp. 32 (1978), pp. 947-954. [MR: 501990] [Zbl: 0404.41005] [Google Scholar]
  7. J. H. BRAMBLE, The lagrange multiplier method for Dirichlet's problem, Math. Comp. 37 (1981), pp. 1-11. [MR: 616356] [Zbl: 0477.65077] [Google Scholar]
  8. P. G. CIARLET and P. A. RAVIART, A mixed finite element method for the biharmonic equation, Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, C. DeBoor, Ed., Academic Press, New York, 1974, pp. 125-143. [MR: 657977] [Zbl: 0337.65058] [Google Scholar]
  9. P. G. CIARLET and R. GLOWINSKI, Dual iterative techniques for solving a finite element approximation of the biharmonic equation, Comput. Methods Appl. Mech. Engrg., 5 (1975), pp. 277-295. [MR: 373321] [Zbl: 0305.65068] [Google Scholar]
  10. R. S. FALK, Approximation of the biharmonic equation by a mixed finite element method, SIAM J. Numer. Anal., 15 (1978), pp. 556-567. [MR: 478665] [Zbl: 0383.65059] [Google Scholar]
  11. R. GLOWINSKI and O. PIRONNEAU, Numerical Methods for the first biharmonic equation and for the two-dimensional Stokes problem, SIAM Review, 21 (1979), pp. 167-212. [MR: 524511] [Zbl: 0427.65073] [Google Scholar]
  12. J. L. LIONS and E. MAGENES, Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968. [MR: 247243] [Zbl: 0165.10801] [Google Scholar]
  13. M. SCHECHTER, On On $L^p$ estimates and regularity II, Math. Scand. 13 (1963), pp. 47-69. [EuDML: 165850] [MR: 188616] [Zbl: 0131.09505] [Google Scholar]
  14. R. WEINSTOCK, Calculus of Variations, McGraw-Hill, New York, 1952. [Zbl: 0049.19503] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you