Free Access
Issue
RAIRO. Anal. numér.
Volume 18, Number 2, 1984
Page(s) 161 - 174
DOI https://doi.org/10.1051/m2an/1984180201611
Published online 31 January 2017
  1. 1. R. D. BROWN, Convergence of approximation methods for eigenvalues of completely continuons quadratic forms, Rocky Mt. J. of Math. 10, No. 1, 1980, pp. 199-215. [MR: 573871] [Zbl: 0445.49043] [Google Scholar]
  2. 2. F. CHATELIN, The spectral approximation of linear operators with applications to the computation of eigenelements of differential and integral operators, SIAM Review, 23 No. 4, 1981, pp. 495-522. [MR: 636082] [Zbl: 0472.65048] [Google Scholar]
  3. 3. F. CHATELIN, J. LEMORDANT, Error bounds in the approximation of eigenvalues of differential and integral operators, J. Math. Anal. Appl. 62, No. 2, 1978, pp. 257-271. [MR: 483398] [Zbl: 0391.65023] [Google Scholar]
  4. 4. F. CHATELIN, Convergence of approximation methods to compute eigenelements of linear operators, SIAM J. Numer. Anal. 10, No. 5, 1973, pp. 939-948. [MR: 349004] [Zbl: 0266.65048] [Google Scholar]
  5. 5. J. DESCLOUX, N. NASSIF, J. RAPPAZ, On spectral approximation , Part 1 : The problem of convergence, Part 2 : Error estimates for the Galerkin method, RAIRO Anal. Numer. 12, 1978, pp. 97-119. [EuDML: 193319] [MR: 483400] [Zbl: 0393.65024] [Google Scholar]
  6. 6. R. GLOWINSKI, J. L. LIONS, R. TRÉMOLIÈRES, Numerical analysis of variational inequalities, 1981. [MR: 635927] [Zbl: 0463.65046] [Google Scholar]
  7. 7. T. KATO, Perturbation theory for linear operators, Springer Verlag, Berlin, 1966. [MR: 203473] [Zbl: 0148.12601] [Google Scholar]
  8. 8. T. REGINSKA, Convergence of approximation methods for eigenvalue problems for two forms, to appear. [MR: 772268] [Zbl: 0584.65033] [Google Scholar]
  9. 9. T. REGINSKA, Eigenvalue approximation, Computational Mathematics, Banach Center Publications. [Zbl: 0583.65035] [Google Scholar]
  10. 10. F. STUMMEL, Diskrete Konvergenz linearer operatoren, I Math. Ann. 190, 1970, 45-92 ; II Math. Z. 120, 1971, pp. 231-264. [EuDML: 162091] [MR: 291870] [Zbl: 0203.45301] [Google Scholar]
  11. 11. R. TEMAM, Numerical analysis, 1973. [Zbl: 0261.65001] [Google Scholar]
  12. 12. H. F. WEINBERGER, Variational methods for eigenvalue approximation, Reg. Conf. Series in Appl. Math. 15, 1974. [MR: 400004] [Zbl: 0296.49033] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you