Free Access
Issue
RAIRO. Anal. numér.
Volume 18, Number 3, 1984
Page(s) 309 - 332
DOI https://doi.org/10.1051/m2an/1984180303091
Published online 31 January 2017
  1. 1. K. BABA and M. TABATA, On a conservative upwind finite element scheme for convective diffusion equations, R.A.I.R.O., Anal. Numér., Vol. 15, 1981, pp. 3-25. [EuDML: 193369] [MR: 610595] [Zbl: 0466.76090]
  2. 2. F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, R.A.I.R.O., Anal. Numér., Vol. 8, 1974, pp. 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047]
  3. 3. P. G. CIARLET, Discrete maximum principle for finite-difference operators, Aeq. Math., Vol. 4, 1970, pp. 338-352. [EuDML: 136095] [MR: 292317] [Zbl: 0198.14601]
  4. 4. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978. [MR: 520174] [Zbl: 0383.65058]
  5. 5. P. G. CIARLET and P.-A. RAVIART, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., Vol. 2, 1973, pp. 17-31. [MR: 375802] [Zbl: 0251.65069]
  6. 6. R. COURANT and D. HILBERT, Methods of Mathematical Physics, Vol. II, Interscience Publishers, New York, 1962. [MR: 65391] [Zbl: 0099.29504]
  7. 7. M. CROUZEIX and P.-A. RAVIART, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, R.A.I.R.O., Anal. Numér., Vol. 7, 1973, pp. 33-76. [EuDML: 193250] [MR: 343661] [Zbl: 0302.65087]
  8. 8. A. DERVIEUX and F. THOMASSET, Sur l'approximation d'écoulements multifluides incompressibles visqueux par des éléments finis triangulaires de degré un, Rapports de Recherche 67 (LABOLIA INRIA), Avril, 1981.
  9. 9. H. FUJII, Some remarks on finite element analysis of time-dependent field problem, Theory and Practice in Finite Element Structural Analysis, Y. Yamada and R. H. Gallagher, Eds., University of Tokyo Press, 1973, pp. 91-106. [Zbl: 0373.65047]
  10. 10. T. IKEDA, Artificial viscosity in finite element approximations to the diffusion equations with drift terms, H. Fujita and M. Yamaguti, Eds., Lecture Notes in Num. Appl. Anal., Kinokuniya, Tokyo, Vol. 2, 1980, pp. 59-78. [MR: 684080] [Zbl: 0468.76087]
  11. 11. H. KANAYAMA, Discrete models for salinity distribution in a bay - Conservative law and maximum principle, Proc. Japan Nat. Congr. for Applied Mech., 1980, Theoretical and Applied Mechanics, Vol. 28, 1980, pp. 559-579.
  12. 12. F. KIKUCHI, Discrete maximum principle and artificial viscosity in finite element approximation to convective diffusion equations, ISAS Report., No. 550, 1977.
  13. 13. F. KIKUCHI and T. USHIJIMA, Theoretical analysis of some finite element schemes for convective diffusion equations, R. H. Gallagher, D. H. Norrie, J. T. Oden and O. C. Zienkiewicz, Eds., Finite Elements in Fluids, John Wiley & Sons Ltd, Vol. 4, 1982, pp. 67-87. [MR: 647391]
  14. 14. K. OHMORI, The discrete maximum principle for nonconforming finite element approximations to stationary convective diffusion equations, Math. Rep. Toyama Univ., Vol. 2, 1979, pp. 33-52. Corrections, ibid.,Vol. 4, 1981, pp. 179-182. [MR: 542377] [Zbl: 0459.65073]
  15. 15. P.-A. RAVIART and J. M. THOMAS, Primal hybrid finite element methods for 2nd order elliptic equations, Math. Comp., Vol. 31, 1977, pp. 391-413. [MR: 431752] [Zbl: 0364.65082]
  16. 16. R. TEMAM, Navier-Stokes Equations, North Holland, Amsterdam, 1977. [Zbl: 0383.35057]
  17. 17. F. THOMASSET, Implementation of Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, New York, 1982. [MR: 720192] [Zbl: 0475.76036]
  18. 18. T. USHIJIMA, On a certain finite element method of the upstream type applied to convective diffusion problems, China-France Symposium on the Finite Element Method, 1982. [MR: 754025] [Zbl: 0663.76113]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you