Free Access
Volume 19, Number 1, 1985
Page(s) 111 - 143
Published online 31 January 2017
  1. D. N. ARNOLD, L. R. SCOTT, M. VOGELIUS, Regular solutions of div u = f with Dirichlet boundary conditions on a polygon, Tech. Note, University of Maryland, to appear. [Zbl: 0702.35208] [Google Scholar]
  2. I. BABUSKA, K. AZIZ, Survey lectures on the mathematical foundations of the finite element method. In The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz, editor, Academic Press, 1972. [MR: 347104] [Zbl: 0268.65052] [Google Scholar]
  3. J. M. BOLAND, R.A. NICOLAIDES, Stability of finite elements under devergence constraints, SIAM J. Num. Anal. 20 (1983), pp. 722-731. [MR: 708453] [Zbl: 0521.76027] [Google Scholar]
  4. M. CROUZEIX, P. A. RAVIART, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, I. R.A.LR.O. Sér. Rouge 7 (1973), pp. 33-75. [EuDML: 193250] [MR: 343661] [Zbl: 0302.65087] [Google Scholar]
  5. P.C. DUNNE, Reply to comments by B. Irons on his paper « Complete polynomial displacement fields for finite element method », Aero. J. Roy. Aero. Soc.72 (1973) pp. 710-711. [Google Scholar]
  6. G. J. FIX, M. D. GUNZBURGER, R. A. NICOLAIDES, On mixed finite element methods for first order elliptic systems. Numer. Math. 37 (1981), pp. 29-48. [EuDML: 132716] [MR: 615890] [Zbl: 0459.65072] [Google Scholar]
  7. V. GIRAULT, P. A. RAVIART, Finite Element Approximation of the Navier-Stokes Equation. Lecture Notes in Mathematics, 749, Springer-Verlag, 1979. [MR: 548867] [Zbl: 0413.65081] [Google Scholar]
  8. P. GRISVARD, Boundary value problems in non-smooth domains, Lecture Notes # 19, University of Maryland, 1980. [Google Scholar]
  9. B. MERCIER, A conforming finite element method for two dimensional, incompressible elasticity, Int. J. Num Meths. Eng. 14 (1979), pp. 942-945. [MR: 533310] [Zbl: 0397.73065] [Google Scholar]
  10. J. MORGAN R. SCOTT, A nodal basis for $C^1$ piecewise polynomials of degree $n\ge 5$ no 5. Math. Comput. 29 (1975), pp. 736-740. [MR: 375740] [Zbl: 0307.65074] [Google Scholar]
  11. J. MORGAN R. SCOTT, The dimension of the space of C 1 piecewise polynomials (Preprint). [Google Scholar]
  12. L. R. SCOTT,M. VOGELIUS, Conforming finite element methods for incompressible and nearly incompressible continua. Proceedings of the 1983 Summer Seminar on Large-scale Computations in Fluid Mechanics, S. Osher, editor, Lect. Appl. Math. 22, to appear. [MR: 818790] [Zbl: 0582.76028] [Google Scholar]
  13. E. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. [MR: 290095] [Zbl: 0207.13501] [Google Scholar]
  14. R. STENBERG, Analysis of mixed finite element methods for the Stokes problem : A unified approach. To appear, Math. Comp. [MR: 725982] [Zbl: 0535.76037] [Google Scholar]
  15. G. STRANG, Piecewise polynomials and the finite element method, Bull. AMS 79 (1973), pp, 1128-1137. [MR: 327060] [Zbl: 0285.41009] [Google Scholar]
  16. B. A. SZABO, P. K. BASU, D. A. DUNAVANT, D. VASILOPOULOS, Adaptive finite element technology in integrated design and analysis, Report WU/CCM-81/1. Washington Univestity, St. Louis. [Google Scholar]
  17. R. TEMAM, Navier-Stokes Equations, North-Holland, 1977. [MR: 769654] [Zbl: 0383.35057] [Google Scholar]
  18. M. VOGELIUS, A right-inverse for the divergence operator in spaces of piecewise polynomials. Application to the p-version of the finite element method. Numer. Math. 41 (1983), pp. 19-37. [EuDML: 132837] [MR: 696548] [Zbl: 0504.65060] [Google Scholar]
  19. M. VOGELIUS, An analysis of thep-version of the finite element method for nearly incompressible materials. Uniformly valid, optimal error estimates. Numer. Math. 41 (1983), pp. 39-53. [EuDML: 132838] [MR: 696549] [Zbl: 0504.65061] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you