Free Access
Volume 21, Number 1, 1987
Page(s) 63 - 92
Published online 31 January 2017
  1. J. P. AUBIN, Approximations of elliptic boundary value problems. J. Wiley-Interscience, New York, 1972. [MR: 478662] [Zbl: 0248.65063] [Google Scholar]
  2. N. V. BANICHUK, Problems and methods of optimal structural design. PlenumN. V. BANICHUK, Problems and me Press, New York and London, 1983. [MR: 715778] [Zbl: 0649.73041] [Google Scholar]
  3. D. BEGIS, R. GLOWINSKI, Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal. Appl. Math. & Optim. 2 (1975), 130-169. [MR: 443372] [Zbl: 0323.90063] [Google Scholar]
  4. I. HLAVACEK, Convergence of an equilibrium finite element model for plane elastostatics. Apl. Mat.24 (1979), 427-456. [EuDML: 15121] [MR: 547046] [Zbl: 0441.73101] [Google Scholar]
  5. I. HLAVACEK, Dual finite element analysis for some elliptic variational equations and inequalities. Acta Applicandae Math. 1 (1983), 121-150. [MR: 713475] [Zbl: 0523.65049] [Google Scholar]
  6. J. HLAVACEK : Optimization of the domain in elliptic problems by the dual finite element method. Api.Mat.30 (1985), 50-72. [EuDML: 15384] [MR: 779332] [Zbl: 0575.65103] [Google Scholar]
  7. J. HASLINGER, I. HLAVACEK, Approximation of the Signorini problem with friction by a mixed finite element method. J. Math. Anal. Appl. 86 (1982), 99-122. [MR: 649858] [Zbl: 0486.73099] [Google Scholar]
  8. J. HASLINGER, J. LOVISEK, The approximation of the optimal shape control problem governed by a variational inequality with flux cost functional. To appear in Proc. [Zbl: 0625.73025] [MR: 831811] [Google Scholar]
  9. J. HASLINGER, P. NEITTAANMÄKI, On the existence of optimal shapes in contact problems, Numer. Funct. Anal, and Optimiz. 7 (1984), 107-124. [MR: 767377] [Zbl: 0559.73099] [Google Scholar]
  10. J. HASLINGER, P. NEITTAANMÄKI, T TIIHONEN, On optimal shape design of an elastic body on a rigid foundation. To appear in Proc. of the MAFELAP Confe-rence 1984. [MR: 811062] [Zbl: 0588.73159] [Google Scholar]
  11. J. NECAS, I. HLAVACEK, Mathematical theory of elastic and elasto-plastic bodies.Elsevier, Amsterdam 1981. [Zbl: 0448.73009] [Google Scholar]
  12. V. B WATWOOD, B. J. HARTZ, An equilibrium stress field model for finite element solution of two-dimensional elastostatic problems. Internat. J. Solids Structures 4 (1968), 857-873. [Zbl: 0164.26201] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you