Free Access
Issue
ESAIM: M2AN
Volume 21, Number 1, 1987
Page(s) 93 - 123
DOI https://doi.org/10.1051/m2an/1987210100931
Published online 31 January 2017
  1. R. A., ADAMS, [1] Sobolev spaces; Academic Press (New York, San Francisco, London) 1975. [MR: 450957] [Zbl: 0314.46030] [Google Scholar]
  2. C. BASDEVANT, [1] Le modèle de simulation numérique de turbulence bidimensionnelle du L.M.D.; Note interne du L.M.D. n° 114 (juin 1982). [Google Scholar]
  3. J. BERGH, J. LOFSTROM, [1] Interpolation spaces - an introduction; Springer-Verlag (Berlin, Heidelberg, New York) 1976. [MR: 482275] [Zbl: 0344.46071] [Google Scholar]
  4. C. BERNARDI, C CANUTO, Y. MADAY>, [1] Generalized inf-sup. condition for Chebyshevapproximation of the Navier-Stokes equations; ICASE report 1986-63. [Google Scholar]
  5. C. BERNARDI, Y. MADAY, B. MÉTIVET, [1] Spectral approximation of periodic/non periodic Navier-Stokes equations; to appear, in Numer. Math. [Zbl: 0583.65085] [Google Scholar]
  6. [2] Calcul de la pression dans la résolution spectrale du problème de Stokes. A paraître dans la « Recherche aérospatiale », 1986. [Google Scholar]
  7. C. BERNARDI, G. RAUGEL, [1] Méthodes d'éléments finis mixtes pour les équations de Stokes et de Navier-Stokes dans un polygone convexe; Calcolo 18-3 (1981). [MR: 647827] [Zbl: 0475.76035] [Google Scholar]
  8. C. CANUTO, Y. MADAY, A. QUARTERONI, [1] Combined finite element and spectral approximation of the Navier-Stokes equations Numer. Math. 44, 201-217 (1984). [EuDML: 132929] [MR: 753953] [Zbl: 0614.76021] [Google Scholar]
  9. C. CANUTO, A. QUARTERONI, [1] Approximation Results for Orthogonal Polynomials in Sobolev Spaces, Math, of Comp. 38, (1981), 67-86. [MR: 637287] [Zbl: 0567.41008] [Google Scholar]
  10. J. DESCLOUX, J. RAPPAZ, [1] On numerical approximation of solution branches of nonlinear equations; R.A.I.R.O. Numer. Anal. 16-4, 319-350 (1982). [EuDML: 193402] [MR: 684829] [Zbl: 0505.65016] [Google Scholar]
  11. M. DEVILLE, L. KLEISER, F. MONTIGNY, [1] Pressure and time treatment of a Stokes problem, Int. Journal for Num. Methods in Fluids, 1984. [Zbl: 0554.76033] [Google Scholar]
  12. V. GIRAULT, P. A. RAVIART, [1] Finite Element Approximation of the Navier-Siokes equations, Theorie and Aigorithms ; Springer-Verlag (1986). [MR: 548867] [Zbl: 0413.65081] [Google Scholar]
  13. D. GOTTLIEB, S. A. ORSZAG, [1] Numericol analysis of spectral methods : Theory and applications; CBMSNS F Regional Conference Series in Applied Mathematics, SIAM, Philadelphie 1977. [MR: 520152] [Zbl: 0412.65058] [Google Scholar]
  14. P. GRISVARD, [1] Espaces intermédiaires entre espaces de Sobolev avec Poids; Ann.Scuola Norm. Sup. Pisa, 17, 1963. [EuDML: 83306] [MR: 160104] [Zbl: 0117.08602] [Google Scholar]
  15. L. KLEISER, U. SCHUMANN, [1] Treatment of Incompressibility and Boundary Conditions in 3-D Numerical Spectral Simulations of Plane Channel Flows, proceedings of the Third GAMM Conference on Numerical Methods in Huid Mechanics, Viewig-Verlag, Braunschweig (1980), 165-173. [Zbl: 0463.76020] [Google Scholar]
  16. P. LE QUERE, T. ALZIARY de ROQUEFORT, [1] Sur une méthode spectrale semi implicite pour la résolution des équations de Navier-Stokes d'un écoulement bidimensionnelvisqueux incompressible, C.R. Acad. Se. Paris, 294 (3 mai 1982), Série II, p. 941-944. [MR: 668777] [Zbl: 0489.76037] [Google Scholar]
  17. J. L. LIONS, [1] Quelques méthodes de résolution de problèmes aux limites non linéaires, Dunod, 1969. [MR: 259693] [Zbl: 0189.40603] [Google Scholar]
  18. Y. MADAY, [1] Analysis of spectral operators in one dimensional domain; ICASE report 1985, 17. [Google Scholar]
  19. [2] Some spectral methods concerning a 4th order l-D problem ; to appear. [Google Scholar]
  20. [3] Pseudo-spectral operators in multi-dimensional domains-application to Navier-Stokes problem; to appear. [Google Scholar]
  21. Y. MADAY, B. MÉTIVET, [1] stimations d'erreur pour l'approximation des équations de Stokes par une méthode spectrale; la « Recherche aérospatiale », 4, (1983), p. 237 à 244. [MR: 729645] [Zbl: 0523.76018] [Google Scholar]
  22. Y. MADAY, A. QUARTERONI, [1] Spectral and pseudo-spectral approximations of Navier-Stokes équations; S.I.A.M. J. Numer. Anal 19(1982). [MR: 664883] [Zbl: 0503.76035] [Google Scholar]
  23. [2] Legendre and Chebyshev spectral approximation of Burger's équations; Numer.Math., 37 (1981). [EuDML: 132733] [MR: 627106] [Zbl: 0452.41007] [Google Scholar]
  24. [3] Approximation of Burger's equations by pseudo-spectral methods; R.A.I.R.O.An. Num. 16-4(1982). [Google Scholar]
  25. M. R. MALIK, T. A. ZANG, M. Y. HUSSAINI, [1] A spectral collocation method for the Navier-Stokes equations, « ICASE Report » n° 84-19. [Zbl: 0573.76036] [Google Scholar]
  26. B. MÉTIVET, [1] Résolution des équations de Navier-Stokes par méthodes spectrales. Thèse, Université P. & M. Curie (1987). [Google Scholar]
  27. B. MÉTIVET, Y. MORCHOISNE, [1] Multy domain spectral technique for viscous flow calculations. « ONERA » T. P, n° 1981-134. [Zbl: 0515.76031] [Google Scholar]
  28. Y. MORCHOISNE, [1] Résolution des équations de Navier-Stokes par méthode pseudo-spectrale en espace-temps; la « Recherche Aérospatiale » 5, (1979), pp. 293-306. [MR: 550092] [Zbl: 0418.76026] [Google Scholar]
  29. R. D. MOSER, P. MOIN A. LÉONARD, [1] A spectral numerical method for the Navier-Stokes equations with application to Taylor Couette flow; JCP - 52(1983), pp. 524-544. [MR: 727383] [Zbl: 0529.76034] [Google Scholar]
  30. S. A. ORSZAG, [1] Spectral methods for problems in complex geometries, J.C.P. 37 (1980), pp. 70-92. [MR: 584322] [Zbl: 0476.65078] [Google Scholar]
  31. S. A. ORSZAG, M. ISRAELI, M. DEVILLE, [1] Boundary Conditions for Incompressible Flows; to appear. [Zbl: 0648.76023] [Google Scholar]
  32. S. A. ORSZAG, A. T. PATERA, [1] Secondary instability of wall-bounded shear flows, J. Fluid Mech., 128 (1983). [Zbl: 0556.76039] [Google Scholar]
  33. R. VOIGT, D. GOTTLIEB, M. Y. HUSSAINI, [1] Proc. of Symposium on Spectral methods for Partial Differential Equations, SIAM Philadelphia (1984). [MR: 758260] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you