Free Access
Volume 21, Number 2, 1987
Page(s) 199 - 238
Published online 31 January 2017
  1. I. BABUSKA and A. K. AZIZ, Survey Lectures on the Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed.), 3-359, Academic Press, New York, 1972. [MR: 421106] [Zbl: 0268.65052] [Google Scholar]
  2. I. BABUSKA, M. R. DORR, Error estimates for the combined h and p versions of finite element method. Numer. Math. 37 (1981), 252-277. [MR: 623044] [Zbl: 0487.65058] [Google Scholar]
  3. I. BABUSKA, W. GUI, B. GUO, B. A. SZABO, Theory and performance of the h-p version of the finite element method. To appear. [Google Scholar]
  4. I. BABUSKA, R. B. KELLOGG, J. PITKÄRANTA, Direct and inverse error estimates for finite element method. . SIAM J. Numer. Anal. 18 (1981), 515-545. [Zbl: 0487.65059] [Google Scholar]
  5. I. BABUSKA, M. SURI, The optimal convergence rate of the p-version of the finite element method. Tech. Note BN-1045, Institute for Physical Science and Technology, University of Maryland, Oct. 1985. [Zbl: 0637.65103] [Google Scholar]
  6. I. BABUSKA,B. A. SZABO and I. N. KATZ, The p-version of the finite element method. SIAM J. Numer. Anal. 18 (1981), 515-545. [MR: 615529] [Zbl: 0487.65059] [Google Scholar]
  7. I. BABUSKA and B. A. SZABO, On the rate of convergence of finite element method. Internat. J. Numer. Math. Engrg. 18 (1982), 323-341. [MR: 648550] [Zbl: 0498.65050] [Google Scholar]
  8. I. BERGH and J. LOFSTROM, Interpolation Spaces. Springer, Berlin, Heidelberg, New York, 1976. [Zbl: 0344.46071] [Google Scholar]
  9. P. G. CIARLET, The Finite Element Method for Elliptic Problems. North-Holland, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  10. M. R. DORR, The approximation theory for the p-version of the finite element method. SIAM J. Numer. Anal. 21 (1984), 1180-1207. [MR: 765514] [Zbl: 0572.65074] [Google Scholar]
  11. M. R. DORR, The Approximation of the Solutions of Elliptic Boundary-Value Problems via the p-Version of the Finite Element Method. SIAM J. Numer. Anal. 23 (1986), 58-77. [MR: 821906] [Zbl: 0617.65109] [Google Scholar]
  12. P. GRISVARD, Elliptic problems in nonsmooth domains. Pitman, Boston, 1985. [MR: 775683] [Zbl: 0695.35060] [Google Scholar]
  13. W. GUI and I. BABUSKA, The h, p and h-p versions of the finite element method for one dimensional problem : Part 1 : The error analysis of the p-version. Tech. Note BN-1036 ; Part 2 : The error analysis of the h and h-p versions. Tech. Note BN-1037 ; Part 3 : The adaptive h-p version, Tech. Note BN-1038, IPST, University of Maryland, College Park, 1985. To appear in Nume. Math. [Google Scholar]
  14. B. GUO, I. BABUSKA, The h-p Version of the Finite Element Method. Part I : The basic approximation results. Part II : General results and applications. To appear in Comp. Mech. 1 (1986). [MR: 1017747] [Zbl: 0634.73059] [Google Scholar]
  15. G. H. HARDY, T. E. LITTLEWOOD, G. POLYA, Inequalities. Cambridge University Press, Cambridge, 1934. [Zbl: 0010.10703] [JFM: 60.0169.01] [Google Scholar]
  16. V. A. KONDRAT'EV, Boundary value problems for elliptic equations in domains with conic or angular points. Trans. Moscow Math. Soc. (1967), 227-313. [MR: 226187] [Zbl: 0194.13405] [Google Scholar]
  17. |17] J. L. LIONS, E. MAGENES, Non-homogeneous boundary value problems and applications-I. Springer-Verlag, Berlin, Heidelberg, New York, 1972. [Zbl: 0223.35039] [Google Scholar]
  18. A. PINKUS, n-widths in Approximation Theory. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985. [MR: 774404] [Zbl: 0551.41001] [Google Scholar]
  19. E. M. STEIN, Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, N. J., 1970. [MR: 290095] [Zbl: 0207.13501] [Google Scholar]
  20. G. STRANG and G. J. FIX, An Analysis of the Finite Element Method. Prentice-Hall, Inglewood Cliffs, 1973. [MR: 443377] [Zbl: 0356.65096] [Google Scholar]
  21. B. A. SZABO, PROBE : Theoretical Manual. Noetic Technologies Corporation, St Louis, Missouri, 1985. [Google Scholar]
  22. B. A. SZABO, Computation of Stress Field Parameters in Area of Steep stress gradients. Tech. Note WU/CCM-85/1, Center for Computational Mechanics, Washington University, 1985. [Zbl: 0586.73170] [Google Scholar]
  23. B. A. SZABO, Mesh Design of the p-Version of the Finite Element Method. Lecture at Joint ASME/ASCE Mechanics Conference, Albuquerque, New Mexico, June 24-26, 1985. Report WV/CCM-85/2, Center for Computational Mechanics, Washington University, St Louis. [Zbl: 0587.73106] [Google Scholar]
  24. B. A. SZABO, Implementation of a Finite Element Software System with h- and p-Extension Capabilities. Proc., 8th Invitational UFEM Symposium : Unification of Finite Element Software Systems. Ed. by H. Kardestuncer, The University of Connecticut, May 1985. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you