Free Access
Volume 21, Number 3, 1987
Page(s) 465 - 485
Published online 31 January 2017
  1. C BAIOCCHI, Estimations d’erreur dans $L^\infty $ pour les inéquations à obstacle, in « Mathematical Aspects of Finite Element Methods », Lecture Notes in Mathematics, 606, Springer Verlag, NewYork, in 1977, pp. 27-34. [MR: 488847] [Zbl: 0374.65053] [Google Scholar]
  2. L. A. CAFFARELLI and A. FRIEDMAN, Regularity of the free boundary of a gas flow in ann-dimensional porous medium, Indiana Math. J. 29 (1980), 361-391 [MR: 570687] [Zbl: 0439.76085] [Google Scholar]
  3. M. G. CRANDALL and L. TARTAR, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc.34 (1980), 385-390. [MR: 553381] [Zbl: 0449.47059] [Google Scholar]
  4. E. Di BENEDETTO and D. HOFF, An interface tracking algorithm for the porous medium equation, Trans, Amer. Math. Soc.284 (1984), 463-500. [MR: 743729] [Zbl: 0564.76090] [Google Scholar]
  5. M. GURTIN,R. MACCAMY and E. SOCOLOVSKY, A coordinate transformation for the porous media equation that renders the free boundary stationary, MRCTech. Rep.2560. [Zbl: 0574.76093] [Google Scholar]
  6. K. HOLLIG and M. PILANT, Regularity of the free boundary for the porous medium equation, MRC Tech. Rep.2742. [Zbl: 0621.35101] [Google Scholar]
  7. J. JEROME, Approximation of Nonlinear Evolution Systems, Academic Press,New York, 1983. [MR: 690582] [Zbl: 0512.35001] [Google Scholar]
  8. B. J. LUCIER, On nonlocal monotone difference methods for scalar conservation laws, Math. Comp. 47 (1986), 19-36. [MR: 842121] [Zbl: 0604.65061] [Google Scholar]
  9. R. H. NOCHETTO, A note on the approximation of free boundaries by finite element methods, Modélisation Math, et Anal. Num. 20 (1986), 355-368. [EuDML: 193481] [MR: 852686] [Zbl: 0596.65092] [Google Scholar]
  10. M. E. ROSE, Numerical methods for flows through porous media. I, Math.Comp. 40 (1983), 435-467. [MR: 689465] [Zbl: 0518.76078] [Google Scholar]
  11. K. TOMOEDA and M. MIMURA , Numerical approximations to interface curves for a porous media equation, Hiroshima Math. J. 13 (1983), 273-294. [MR: 707183] [Zbl: 0537.76065] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you