Free Access
Volume 21, Number 4, 1987
Page(s) 605 - 626
Published online 31 January 2017
  1. J. P. AUBIN, L'analyse non linéaire et ses motivations économiques, Masson (1984). [MR: 754997] [Zbl: 0551.90001] [Google Scholar]
  2. G. R. BITRAN, L. MAGNANTI, The structure of admissible points with respect to cone dominance, Journal Optimization Theory and Applications, 29 (1979) 573-614. [MR: 552107] [Zbl: 0389.52021] [Google Scholar]
  3. L. G. CHALMET,R. L. FRANCIS and A. KOLEN, Finding efficient solutions for rectilinear distance location problem efficiently, European Journal of Operational Research, 6 (1986), 117-124. [MR: 626427] [Zbl: 0451.90037] [Google Scholar]
  4. R. DURIER, On efficient points and Fermat-Weber problem, Working Paper, University of Dijon (1984). [Google Scholar]
  5. R. DURIER, Weighting factor results in vector optimization, Working Paper, University of Dijon (1985). [Zbl: 0628.90075] [Google Scholar]
  6. R. DURIER, C. MICHELOT, Geometrical properties of the Fermat-Weber problem, European Journal of Operational Research, 20 (1985), 332-343. [MR: 800909] [Zbl: 0564.90013] [Google Scholar]
  7. R. DURIER, C. MICHELOT, Sets of efficient points in a normed space, Journal of Mathematical Analysis and Applications, à paraître. [Zbl: 0605.49020] [Google Scholar]
  8. A. M. GEOFFRION, Proper efficiency and the theory of vector maximization, Journal of Mathematical Analysis and Applications, 22 (1968), 618-630. [MR: 229453] [Zbl: 0181.22806] [Google Scholar]
  9. P. HANSEN, J. PERREUR, J. F. THISSE, Location theory, dominance and convexity : some further results, Operations Research, 28 (1980), 1241-1250. [Zbl: 0449.90027] [Google Scholar]
  10. D. T. LUC, Structure of the efficient point set, Proceedings of the American Mathematical Society, 95 (1985), 433-440. [MR: 806083] [Zbl: 0596.49007] [Google Scholar]
  11. H. MOULIN, F. FOGELMAN-SOULIE, La convexité dans les mathématiques de la décision, Hermann (1979). [Google Scholar]
  12. P. H. NACCACHE, Connectedness of the set of nondominated outcomes in multicriteria optimization, Journal of Optimization Theory and Applications, 25 (1978), 459-467. [MR: 508110] [Zbl: 0363.90108] [Google Scholar]
  13. F. ROBERT, Étude et utilisation de normes vectoriellesen analyse numérique linéaire, Thèse de Doctorat ès Sciences, Grenoble (1968). [Google Scholar]
  14. F. ROBERT, Meilleure approximation en norme vectorielle et minima de Pareto, Modélisation Mathématique et Analyse Numérique, 19 (1985), 89-110. [EuDML: 193444] [MR: 813690] [Zbl: 0558.41035] [Google Scholar]
  15. R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press (1970). [MR: 274683] [Zbl: 0193.18401] [Google Scholar]
  16. J. F. THISSE, J. E. WARD, R. E. WENDELL, Some properties of location problems with block and round norms, Opérations Research, 32 (1984), 1309-1327. [MR: 775261] [Zbl: 0557.90023] [Google Scholar]
  17. J. E. WARD, R. E. WENDELL, Characterizing efficient points in location problem under the one-infinity norm, Locational analysis of public facilities, ed. J. F. Thisse et H. G. Zoller, North Holland, Studies in mathematical and managed economies, 31, (1983), 413-429. [Google Scholar]
  18. R. E. WENDELL, A. P. HURTER, Location theory, dominance and convexity,Operations research, 21 (1973), 314-321. [MR: 351409] [Zbl: 0265.90040] [Google Scholar]
  19. R. E. WENDELL, A. P. HURTER, T. J. LOWE, Efficient points in location problems, AIEE Transactions, 9 (1973), 238-246. [MR: 472073] [Google Scholar]
  20. R. WERNSDORFF, On the connectedness of the set of efficient points in convex optimization problems with multiple or random objectives, Mathematische Operationsforschung und Statistik, ser. Optimization, 15 (1984), 379-387. [MR: 756330] [Zbl: 0553.90074] [Google Scholar]
  21. D. J. WHITE, Optimality and efficiency, John Wiley and Sons (1982). [MR: 693459] [Zbl: 0561.90087] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you