Free Access
Issue
ESAIM: M2AN
Volume 21, Number 4, 1987
Page(s) 627 - 639
DOI https://doi.org/10.1051/m2an/1987210406271
Published online 31 January 2017
  1. I. M. GEL'FAND and B. LEVITAN (1955), On the determination of a differential équation from its spectral fonction. Amer. Math. Soc. Translations, Serie 2, vol. 1, pp. 253-304. [MR: 73805] [Zbl: 0066.33603] [Google Scholar]
  2. H. HOCHSTADT (1973), The inverse Sturm-Liouville problem. Communication on Pure and Applied Mathématiques, vol. XXVI, pp. 716-729. [MR: 330607] [Zbl: 0281.34015] [Google Scholar]
  3. H. HOCHSTADT (1976), On the determination of the density of a vibrating string from spectral data. J. of Math Analysis and Applications 55, pp. 673-685. [MR: 432968] [Zbl: 0337.34023] [Google Scholar]
  4. A. MIZUTANI (1984), On the inverse Sturm-Liouville problem. J. Fac. Sci. Univ. Tokyo, Sect. 1A, Math., 31, pp. 319-350. [MR: 763425] [Zbl: 0568.65056] [Google Scholar]
  5. R. MURAYAMA (1981), The Gel'fand and Levitan theory and certain inverse problem. J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math, 28, pp. 317-330. [MR: 633001] [Zbl: 0485.35082] [Google Scholar]
  6. A. PIECE (1979), Unique identification of eigenvalues and coefficients in a parabolic problem. SIAM J. Control and Optimization, vol 17, n° 4, Jully. [MR: 534419] [Zbl: 0415.35035] [Google Scholar]
  7. T. SUZUKI (1985), On the inverse Sturm-Liouville problem for sqatialy symmetric operators, I. J. of Differential Equations, 56, pp. 165-194. [MR: 774161] [Zbl: 0547.34017] [Google Scholar]
  8. E. C. TITCHMARSH (1938), Introduction to the theory of Fourier integrals, Oxford University Press, London. [JFM: 63.0367.05] [Google Scholar]
  9. M. COURDESSES, M. POLIS, M. AMOUROUX (1981), On the identifiability of parameters in a class of parabolic distributed Systems. IEEE Trans. Automat.Control, vol. 26, avril, n° 2. [MR: 613557] [Zbl: 0487.93016] [Google Scholar]
  10. A. EL BADIA, Thèse Université Paul Sabatier, Toulouse (décembre 1985). [Google Scholar]
  11. R. COURANT and D. HILBERT (1953), Methods of Math. Phys., vol. I, Interscience, New York. [Zbl: 0051.28802] [MR: 65391] [Google Scholar]
  12. T. SUZUKI (1983), Uniqueness and nonuniqueness in an inverse problem for the parabolic equation. J. of Differential Equations, 47, pp. 296-316. [MR: 688107] [Zbl: 0519.35077] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you