Free Access
Issue
ESAIM: M2AN
Volume 21, Number 4, 1987
Page(s) 655 - 678
DOI https://doi.org/10.1051/m2an/1987210406551
Published online 31 January 2017
  1. Ph. BENILAN, Solutions intégrales d'équations d'évolution dans un espace de Banach, C. R. Acad. Sci. Paris, A-274 (1972), 47-50. [MR: 300164] [Zbl: 0246.47068] [Google Scholar]
  2. A. E. BERGER, H BREZIS &J. C. W. ROGERS, A numerical method for solving the problem $u_t-\Delta f(u)=0$ R.A.I.R.O. Anal. Numér., 13 (1979), 297-312. [EuDML: 193344] [MR: 555381] [Zbl: 0426.65052] [Google Scholar]
  3. A. BOSSAVIT,A. DAMLAMIAN & M. FREMOND Eds., Free boundary problems: applications and theory, vol. III, Research Notes in Math. 120, Pitman, Boston (1985). [MR: 863154] [Zbl: 0578.35003] [Google Scholar]
  4. H. BREZIS, On some degenerate non-linear parabolic equations, in Non-linear functional analysis (F. E. Browder Ed.), A.M.S. XVIII 1 (1970), 28-38. [MR: 273468] [Zbl: 0231.47034] [Google Scholar]
  5. H. BREZIS & A. PAZY, Convergence and approximation of semigroups of non-linear operators in Banach spaces, J. Funct. Anal., 9 (1972), 63-74. [MR: 293452] [Zbl: 0231.47036] [Google Scholar]
  6. J. F. CIAVALDINI, Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis, SIAM J. Numer. Anal., 12 (1975), 464-487. [MR: 391741] [Zbl: 0272.65101] [Google Scholar]
  7. M. G. CRANDALL&T. M. LIGGETT, Generation of semi-groups of non-linear transformations on general Banach spaces, Amer J. Math., 93 (1971), 265-298. [MR: 287357] [Zbl: 0226.47038] [Google Scholar]
  8. J. DOUGLAS Jr.& T. DUPONT, Galerkin methods for parabolic equations, SIAM J. Numer. Anal., 7 (1970), 575-626. [MR: 277126] [Zbl: 0224.35048] [Google Scholar]
  9. J. DOUGLAS Jr. & T. DUPONT, Alternating-direction Galerkin methods on rectangles, in Numerical solutions of partial differential equations, vol. II (B. Hubbard Ed.), Academic Press, New York (1971), 133-214. [MR: 273830] [Zbl: 0239.65088] [Google Scholar]
  10. J. DOUGLAS Jr., T. DUPONT & R. E. EWING, Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem, SIAM J. Numer. Anal., 16 (1979), 503-522. [MR: 530483] [Zbl: 0411.65064] [Google Scholar]
  11. C. M. ELLIOTT, Error analysis of the enthalpy method for the Stefan problem, IMA J. Numer. Anal., 7 (1987), 61-71. [MR: 967835] [Zbl: 0638.65088] [Google Scholar]
  12. R. E. EWING, Efficient multistep procedures for nonlinear parabolic problems with nonlinear Neumann boundary conditions, Calcolo, 19 (1982), 231-252. [MR: 695388] [Zbl: 0522.65072] [Google Scholar]
  13. J. W. JEROME, Approximation of nonlinear evolution systems, Academic Press, New York (1983). [MR: 690582] [Zbl: 0512.35001] [Google Scholar]
  14. J. W. JEROME & M. E. ROSE, Error estimates for the multidimensional two-phase Stefan problem, Math. Comp., 39 (1982), 377-414. [MR: 669635] [Zbl: 0505.65060] [Google Scholar]
  15. J. L. LIONS & E. MAGENES, Non-homogeneous boundary value problems and applications, vol. I, Springer-Verlag, Berlin (1972). [MR: 350177] [Zbl: 0223.35039] [Google Scholar]
  16. M. LUSKIN, A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions, SIAM J. Numer. AnaL, 16 (1979), 284-299. [MR: 526490] [Zbl: 0405.65059] [Google Scholar]
  17. E. MAGENES, Problemi di Stefan bifase in piu variabili spaziali, V S.A.F.A., Catania, Le Matematiche, XXXVI (1981), 65-108. [Zbl: 0545.35096] [Google Scholar]
  18. E. MAGENES & C. VERDI, On the semigroup approach to the two-phase Stefan problem with nonlinear flux conditions, in [3], 28-39. [MR: 863159] [Zbl: 0593.35092] [Google Scholar]
  19. G. H. MEYER, Multidimensional Stefan problems, SIAM J. Numer. Anal., 10 (1973), 522-538. [MR: 331807] [Zbl: 0256.65054] [Google Scholar]
  20. R. H. NOCHETTO, Error estimates for two-phase Stefan problems in several space variables, I: linear boundary conditions, Calcolo, 22 (1985), 457-499. [MR: 859087] [Zbl: 0606.65084] [Google Scholar]
  21. R. H. NOCHETTO, Error estimates for two-phase Stefan problems in several space variables, II: nonlinear flux conditions, Calcolo, 22 (1985), 501-534. [MR: 859088] [Zbl: 0606.65085] [Google Scholar]
  22. R. H. NOCHETTO, Error estimates for multidimensional Stefan problems with general boundary conditions, in [3], 50-60. [MR: 863161] [Zbl: 0593.35094] [Google Scholar]
  23. R. H. NOCHETTO, Error estimates for multidimensional singular parabolic problems, Japan J. Appl. Math., 4 (1987), 111-138. [MR: 899207] [Zbl: 0657.65132] [Google Scholar]
  24. R. H. NOCHETTO& C. VERDI, Approximation of degenerate parabolic problems using numerical integration, SIAM J. Numer. Anal., to appear. [MR: 954786] [Zbl: 0655.65131] [Google Scholar]
  25. J. C. W. ROGERS, A. E. BERGER & M. CIMENT, The alternating phase truncation method for numerical solution of a Stefan problem, SIAM J. Numer. Anal., 16 (1979), 563-587. [MR: 537272] [Zbl: 0418.65051] [Google Scholar]
  26. M. E. ROSE, Numerical methods for flows through porous media I, Math. Comp., 40 (1983), 435-467. [MR: 689465] [Zbl: 0518.76078] [Google Scholar]
  27. V. THOMEE, Galerkin finite element methods for parabolic problems, Lecture Notes in Math. 1054, Springer-Verlag, Berlin (1984). [MR: 744045] [Zbl: 0528.65052] [Google Scholar]
  28. C. VERDI, On the numerical approach to a two-phase Stefan problem with nonlinear flux, Calcolo, 22 (1985), 351-381. [MR: 860658] [Zbl: 0612.65084] [Google Scholar]
  29. C. VERDI & A. VISINTIN, Error estimates for a semi-explicit numerical scheme for Stefan-type problems, submitted to Numer. Math. [EuDML: 133231] [MR: 923709] [Zbl: 0617.65125] [Google Scholar]
  30. A. VISINTIN, Stefan problem with phase relaxation, IMA J. Appl. Math., 34 (1985), 225-245. [MR: 804824] [Zbl: 0585.35053] [Google Scholar]
  31. M. F. WHEELER, A priori $L_2$-error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal., 10 (1973), 723-759. [MR: 351124] [Zbl: 0232.35060] [Google Scholar]
  32. R. E. WHITE, An enthalpy formulation of the Stefan problem, SIAM J. Numer. Anal., 19 (1982), 1129-1157. [MR: 679656] [Zbl: 0501.65058] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you