Free Access
Issue |
ESAIM: M2AN
Volume 21, Number 4, 1987
|
|
---|---|---|
Page(s) | 679 - 695 | |
DOI | https://doi.org/10.1051/m2an/1987210406791 | |
Published online | 31 January 2017 |
- R. A. ADAMS, Sobolev spaces, Academic Press (1975) [MR: 450957] [Zbl: 0314.46030] [Google Scholar]
- M. BAKKER, A note on C° Galerkin methods for two point boundary problems, Numer. Math. 38 (1982) 447-453. [EuDML: 132774] [MR: 654109] [Zbl: 0462.65053] [Google Scholar]
- M. BAKKER, One-dimensional Galerkin methods and superconvergenceatinterior nodal points, SIAM J. Numer. Anal. 21 (1984) 101-110. [MR: 731215] [Zbl: 0571.65078] [Google Scholar]
- C. CHEN, Superconvergence of finite element solutions and its derivatives, Numerical Mathematics, 2 (1981), 118-125 (Chinese). [MR: 635547] [Zbl: 0511.65080] [Google Scholar]
- J. F. CIAVALDINI & M. CROUZEIX, finite element method scheme for onedimensional elliptic équations with high super convergence at the node, , Numer.Math. 46 (1985) 417-427. [EuDML: 133004] [MR: 791699] [Zbl: 0548.65067] [Google Scholar]
- J. Jr. DOUGLAS, & T. DUPONT, Galerkin approximations for the two pointboundary problem using continuous pieeewise polynomial spaces, Numer. Math.22 (1974) 99-109. [EuDML: 132256] [MR: 362922] [Zbl: 0331.65051] [Google Scholar]
- J. Jr. DOUGLAS T. DUPONT & M. F. WHEELER, An L°° estimate and asuperconvergence resuit for a Galerkin method for elliptic équations based ontensor products of pieeewise polynomials, RAIRO 8 (1974) 61-66. [EuDML: 193260] [MR: 359358] [Zbl: 0315.65062] [Google Scholar]
- M. KRIZEK & P. NEITTAANMÀKI, Superconvergence phenomenon in the finite element method arising from averaging gradients, , Numer. Math. 45 (1984) 105-116. [EuDML: 132955] [MR: 761883] [Zbl: 0575.65104] [Google Scholar]
- P. LESAINT & M. ZLÂMAL, Superconvergence of the gradient of finite element solutions, RAIRO Anal. Numer. 13 (1979), 139-166. [EuDML: 193337] [MR: 533879] [Zbl: 0412.65051] [Google Scholar]
- N. LEVINE, Superconvergent recovery of the gradient from pieceewise linear finite-element approximations, IMA J. Numer. Anal. 5 (1985) 407-427. [MR: 816065] [Zbl: 0584.65067] [Google Scholar]
- M. NAKAO, Some superconvergence estimates for a Galerkin method for elliptic problems, Bull. Kyushu Inst. Tech. (Math. Natur. Sci.), 31 (1984) 49-58. [MR: 763228] [Zbl: 0575.65105] [Google Scholar]
- M. T. NAKAO, $L^\infty $ error estimates and superconvergence results for a collocation-$H^{-1}$-Galerkin method for elliptic equations, Memoirs of the Faculty of Science, Kyushu University, Ser. A, 39 (1985) 1-25. [MR: 783218] [Zbl: 0584.65073] [Google Scholar]
- M. T. NAKAO, Some superconvergence of Galerkin approximations for parabolic and hyperbolic problems in one space dimension, Bull. Kyushu Inst. Tech. (Math. Natur. Sci.) 32 (1985) 1-14. [MR: 797452] [Zbl: 0623.65119] [Google Scholar]
- M. T. NAKAO, Error estimates of a Galerkin method for some nonlinear Sobolev equations in one space dimension, Numer. Math. 47 (1985) 139-157. [EuDML: 133028] [MR: 797883] [Zbl: 0575.65112] [Google Scholar]
- L. A. OGANESYAN and L. A. rUKHOVETS, Study of the rate of convergence of variational difference schemes for second order elliptic equations in a two dimensional field with a smooth boundary, USSR Comp. Math, and Math.hysics, 9 (1969) 158-183. [Zbl: 0241.65073] [Google Scholar]
- R. RANNACHER & R. SCOTT, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982) 437-445. [MR: 645661] [Zbl: 0483.65007] [Google Scholar]
- A. H. SCHATZ, A weak discrete maximum principle and stability of the finite element method in $L_\infty $ on plane polygonal domains I, Math. Comp. 34 (1980) 77-99. [MR: 551291] [Zbl: 0425.65060] [Google Scholar]
- Q. Z H U, Uniform superconvergence estimates of derivatives for the finite elementmethod, Numerical Mathematics, 4 (1983) 311-318 (Chinese). [Zbl: 0549.65073] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.