Free Access
Volume 22, Number 1, 1988
Page(s) 29 - 51
Published online 31 January 2017
  1. R. S. ANDERSSEN, J. R. CLEARY, Asymptotic Structure in Torsional Free Oscillations of Earth I. Geophys. J. R. Astr. Soc., 39, 1974, 241-268. [Zbl: 0365.73095] [Google Scholar]
  2. I. BABUSKA, J. E. OSBORN, Numerical Treatment of Eigenvalue Problems for Differential Equations with Discontinuons Coefficients. Math. Comp., 32, 1978, 991-1023. [MR: 501962] [Zbl: 0418.65053] [Google Scholar]
  3. I BABUSKA, J. E. OSBORN, Analysis of Finite Element Methods for Second Order Boundary Value Problems using Mesh Dependent Norms. Numer. Math., 34, 1980, 41-62. [EuDML: 132658] [MR: 560793] [Zbl: 0404.65055] [Google Scholar]
  4. I. BABUSKA, J. E. OSBORN, Generalized Finite Element Methods : Their Performance and Their Relation to Mixed Methods. SIAM J. Numer. Anal., 20, 1983, 510-536. [MR: 701094] [Zbl: 0528.65046] [Google Scholar]
  5. U. BANERJEE, Lower Norm Error Estimates for Approximate Solutions of Differential Equations with Non-Smooth Coefficients. Numer. Math, 51, 1987,303-321. [EuDML: 133197] [MR: 895089] [Zbl: 0613.65087] [Google Scholar]
  6. U. BANERJEE, Approximation of Eigenvalues of Differential Equations with Rough Coefficients. Ph. D. thesis, 1985, Univ. of Md., College Park, MD 20742. [Google Scholar]
  7. J. H. BRAMBLE, J. E. OSBORN, Rate of Convergence Estimate for Non-Selfadjoint Eigenvalue Approximations. Math. Comp., 27, 1973, 523-549. [MR: 366029] [Zbl: 0305.65064] [Google Scholar]
  8. F. CHATELIN, Spectral Approximation of Linear Operators, Academia Press, 1983. [MR: 716134] [Zbl: 0517.65036] [Google Scholar]
  9. R. S. FALK, J. E. OSBORN, Error Estimates for Mixed Methods, R.A.I.R.O. Numer. Anal. 14, 1980, 249-277. [EuDML: 193361] [MR: 592753] [Zbl: 0467.65062] [Google Scholar]
  10. S. K. GARG,V. SVALBONAS and G. A. GURTMAN, Analysis of structural Composite Materials, Marcel Dekker, NY, 1973. [Google Scholar]
  11. E. R. LAPWOOD, The Effect of Discontinuities in Density and Rigidity on Torsional Eigenfrequencies. Geophys. J. R. Astr. Soc., 1975, 40, 453-464. [Zbl: 0297.73064] [Google Scholar]
  12. S. NEMAT-NASSER, General Variational Methods for Elastic Waves in Composities. J. Elasticity, 2, 1972, 73-90. [Google Scholar]
  13. S. NEMAT-NASSER, General Variational Principles in Nonlinear and Linear Elasticity with Applications. Mechanics Today, 1, 1974, 214-261. [Zbl: 0305.73007] [Google Scholar]
  14. S. NEMAT-NASSER, F. FU, Harmonic Waves in Layered Composites ; Bounds on Eigenfrequencies, J. Appl. Mech., 41, 1974, 288-290. [Zbl: 0296.73025] [Google Scholar]
  15. J. R. OSBORN, Spectral Approximation of Compact Operators. Math. Comp., 29, 1975, 712-725. [MR: 383117] [Zbl: 0315.35068] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you