Free Access
Issue
ESAIM: M2AN
Volume 22, Number 1, 1988
Page(s) 5 - 28
DOI https://doi.org/10.1051/m2an/1988220100051
Published online 31 January 2017
  1. J BALL, Existence theorems in nonhnear elasticity, Arch Rational Mechnal , (1976), 337-403 [MR: 475169] [Zbl: 0368.73040] [Google Scholar]
  2. P G CIARLET, Quelques remarquessur des problèmes d'existence en élasticiténon lineaire, Rapport INRIA (1983) [Zbl: 0516.73019] [Google Scholar]
  3. P G CIARLET, G GEYMONAT, Sur les lois de comportement en élasticité nonP G CIARLET, G lineaire compressible, C R Acad Sa Pans, serie A (1982), 423-426 [MR: 695540] [Zbl: 0497.73017] [Google Scholar]
  4. P G CIARLET, J NECAS, Unilatéral problems in nonhnear three-dimensionalelasticity, Publications du Laboratoire d'Analyse Numérique Université deans VI (1984) [Zbl: 0557.73009] [Google Scholar]
  5. G STRANG, The polyconvexificaüon of F (Vu), Research Report CM A-RO, 9-3 of the Austrahan National Umversity [Google Scholar]
  6. R V KOHN, G STRANG, Exphcit relaxation of a vanationalproblem in optimaldesign, to appear m Bull Amer Math Soc [Google Scholar]
  7. BUSEMANN, SHEFHARD, Convexity on non convex sets, Proc Coll on onvexity, Copenhagen (1965) [Zbl: 0152.39404] [Google Scholar]
  8. KNOWLES, STERNBERG, On the failure of ellipticity of the équations for finiteelastostatic plane strain, , Arch Rational Mech (1976), 321-336 [Zbl: 0351.73061] [Google Scholar]
  9. G AUBERT, R TAHRAOUI, Sur la faible fermeture de certains ensembles decontrainte en élasticité non lineaire plane, , C R Acad Sci Paris, serie A (1980),37-540, et a paraître dans Arch Rational Mech [MR: 573804] [Zbl: 0434.35021] [Google Scholar]
  10. G. AUBERT, R. TAHRAOUI, Conditions nécessaires de faible fermeture et de 1-rang convexité en dimension 3. Rendiconti del Circolo Matematico di Palermo, Série II, T34, (1985). [MR: 848122] [Zbl: 0647.73017] [Google Scholar]
  11. C.B. Jr., MORREY, Multiple intégrais in the calculus of variations, Springer, Berlin, 1966. [MR: 202511] [Zbl: 0142.38701] [Google Scholar]
  12. P. MARCELLINI, Quasicovex quadratic forms in two dimensions, Applied. Math. Optimiz., 11 (1984), 183-189. [MR: 743926] [Zbl: 0567.49007] [Google Scholar]
  13. F.J. TERPSTRA, Die darstellung biquadratischer formen als summen von quadraten mit anwendung auf die variations rechung, Math. Ann., 116 (1938), 166-180. [EuDML: 159996] [MR: 1513223] [Zbl: 0019.35203] [Google Scholar]
  14. D. SERRE, Formes quadratiques et calcul des variations, J. Math. Pures App., 62 (1983), 177-196. [MR: 713395] [Zbl: 0529.49005] [Google Scholar]
  15. B. DACOROGNA, Remarques sur les notions de polyconvexité, quasiconvexité et convexité de rang 1. Preprint de EPFL, Lausanne (1985), et à paraître dans J. Math. Pures Appl. [MR: 839729] [Zbl: 0609.49007] [Google Scholar]
  16. J. BALL, Differentiability properties of symmetric and isotropic functions, Duke Math. J., vol. 51, n° 3, (1984), 699-728. [MR: 757959] [Zbl: 0566.73001] [Google Scholar]
  17. H. C. SIMPSON S. J. SPECTOR, On copositive matrices and strong ellipticity for isotropic materials, Arch. Rational. Mech. Anal (1983), 55-68. [MR: 713118] [Zbl: 0526.73026] [Google Scholar]
  18. E.L. GURVICH A. I. LURIE, Meckaniki Tverdogotela, (1980), 110-116. [Google Scholar]
  19. G. AUBERT, On a counterexample of a rank 1 convex function which is not polyconvex in the case n = 2, à paraître. [Google Scholar]
  20. R. TEMAN, A characterization of quasi-convex functions, Applied Mathematics and Optimization, 8 (1982), 287-291. [Zbl: 0501.49008] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you