Free Access
Issue
ESAIM: M2AN
Volume 22, Number 1, 1988
Page(s) 5 - 28
DOI https://doi.org/10.1051/m2an/1988220100051
Published online 31 January 2017
  1. J BALL, Existence theorems in nonhnear elasticity, Arch Rational Mechnal , (1976), 337-403 [MR: 475169] [Zbl: 0368.73040]
  2. P G CIARLET, Quelques remarquessur des problèmes d'existence en élasticiténon lineaire, Rapport INRIA (1983) [Zbl: 0516.73019]
  3. P G CIARLET, G GEYMONAT, Sur les lois de comportement en élasticité nonP G CIARLET, G lineaire compressible, C R Acad Sa Pans, serie A (1982), 423-426 [MR: 695540] [Zbl: 0497.73017]
  4. P G CIARLET, J NECAS, Unilatéral problems in nonhnear three-dimensionalelasticity, Publications du Laboratoire d'Analyse Numérique Université deans VI (1984) [Zbl: 0557.73009]
  5. G STRANG, The polyconvexificaüon of F (Vu), Research Report CM A-RO, 9-3 of the Austrahan National Umversity
  6. R V KOHN, G STRANG, Exphcit relaxation of a vanationalproblem in optimaldesign, to appear m Bull Amer Math Soc
  7. BUSEMANN, SHEFHARD, Convexity on non convex sets, Proc Coll on onvexity, Copenhagen (1965) [Zbl: 0152.39404]
  8. KNOWLES, STERNBERG, On the failure of ellipticity of the équations for finiteelastostatic plane strain, , Arch Rational Mech (1976), 321-336 [Zbl: 0351.73061]
  9. G AUBERT, R TAHRAOUI, Sur la faible fermeture de certains ensembles decontrainte en élasticité non lineaire plane, , C R Acad Sci Paris, serie A (1980),37-540, et a paraître dans Arch Rational Mech [MR: 573804] [Zbl: 0434.35021]
  10. G. AUBERT, R. TAHRAOUI, Conditions nécessaires de faible fermeture et de 1-rang convexité en dimension 3. Rendiconti del Circolo Matematico di Palermo, Série II, T34, (1985). [MR: 848122] [Zbl: 0647.73017]
  11. C.B. Jr., MORREY, Multiple intégrais in the calculus of variations, Springer, Berlin, 1966. [MR: 202511] [Zbl: 0142.38701]
  12. P. MARCELLINI, Quasicovex quadratic forms in two dimensions, Applied. Math. Optimiz., 11 (1984), 183-189. [MR: 743926] [Zbl: 0567.49007]
  13. F.J. TERPSTRA, Die darstellung biquadratischer formen als summen von quadraten mit anwendung auf die variations rechung, Math. Ann., 116 (1938), 166-180. [EuDML: 159996] [MR: 1513223] [Zbl: 0019.35203]
  14. D. SERRE, Formes quadratiques et calcul des variations, J. Math. Pures App., 62 (1983), 177-196. [MR: 713395] [Zbl: 0529.49005]
  15. B. DACOROGNA, Remarques sur les notions de polyconvexité, quasiconvexité et convexité de rang 1. Preprint de EPFL, Lausanne (1985), et à paraître dans J. Math. Pures Appl. [MR: 839729] [Zbl: 0609.49007]
  16. J. BALL, Differentiability properties of symmetric and isotropic functions, Duke Math. J., vol. 51, n° 3, (1984), 699-728. [MR: 757959] [Zbl: 0566.73001]
  17. H. C. SIMPSON S. J. SPECTOR, On copositive matrices and strong ellipticity for isotropic materials, Arch. Rational. Mech. Anal (1983), 55-68. [MR: 713118] [Zbl: 0526.73026]
  18. E.L. GURVICH A. I. LURIE, Meckaniki Tverdogotela, (1980), 110-116.
  19. G. AUBERT, On a counterexample of a rank 1 convex function which is not polyconvex in the case n = 2, à paraître.
  20. R. TEMAN, A characterization of quasi-convex functions, Applied Mathematics and Optimization, 8 (1982), 287-291. [Zbl: 0501.49008]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you